Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
TOC Section
Date
Availability
1-2 of 2
Keywords: Tcf7l1
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency
Robert A. Sierra, Nathan P. Hoverter, Ricardo N. Ramirez, Linh M. Vuong, Ali Mortazavi, Bradley J. Merrill, Marian L. Waterman, Peter J. Donovan
Journal:
Development
Development (2018) 145 (4): dev161075.
Published: 23 February 2018
... requires robust mechanisms to keep the cells in a WNT inactive but responsive state. How they achieve this is largely unknown. We explored the role of transcriptional regulators of WNT signaling, the TCF/LEFs. As in mouse ESCs, TCF7L1 is the predominant family member expressed in hESCs. Genome-wide...
Includes: Supplementary data
Journal Articles
Journal:
Development
Development (2013) 140 (8): 1665–1675.
Published: 15 April 2013
...Jackson A. Hoffman; Chun-I Wu; Bradley J. Merrill The core gene regulatory network (GRN) in embryonic stem cells (ESCs) integrates activities of the pro-self-renewal factors Oct4 (Pou5f1), Sox2 and Nanog with that of an inhibitor of self-renewal, Tcf7l1 (Tcf3). The inhibitor function of Tcf7l1...
Includes: Supplementary data