Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
TOC Section
Date
Availability
1-2 of 2
Keywords: Organ boundary
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Development
Development (2017) 144 (22): 4091–4102.
Published: 15 November 2017
...Jessica K. Sawyer; Erez Cohen; Donald T. Fox The molecular identities and regulation of cells at interorgan boundaries are often unclear, despite the increasingly appreciated role of organ boundaries in disease. Using Drosophila as a model, we here show that a specific population of adult midgut...
Includes: Supplementary data
Journal Articles
Ana Espinosa-Ruiz, Cristina Martínez, Miguel de Lucas, Norma Fàbregas, Nadja Bosch, Ana I. Caño-Delgado, Salomé Prat
Journal:
Development
Development (2017) 144 (9): 1619–1628.
Published: 1 May 2017
... activated or repressed expression of several genes, and have a prominent role in negative regulation of BR synthesis. Here, we report that BES1 interaction with TOPLESS (TPL), via its ERF-associated amphiphilic repression (EAR) motif, is essential for BES1-mediated control of organ boundary formation...
Includes: Supplementary data