Priming is the process through which periodic elevations in auxin signalling prepattern future sites for lateral root formation, called prebranch sites. Thusfar is has remained a matter of debate to what extent elevations in auxin concentration and/or auxin signalling are critical for priming and prebranch site formation. Recently, we discovered a reflux-and-growth mechanism for priming generating periodic elevations in auxin concentration that subsequently dissipate. Here we reverse engineer a mechanism for prebranch site formation that translates these transient elevations into a persistent increase in auxin signalling, resolving the prior debate into a two-step process of auxin concentration mediated initial signal and auxin signalling capacity mediated memorization. A critical aspect of the prebranch site formation mechanism is its activation in response to time integrated rather than instantaneous auxin signalling. The proposed mechanism is demonstrated to be consistent with prebranch site auxin signalling dynamics, lateral inhibition and symmetry breaking mechanisms and perturbations in auxin homeostasis.

This content is only available via PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Article PDF first page preview

Article PDF first page preview