Xenopus laevis embryos of stages 14–20 were subjected, for periods of 5–330 min, to hydrostatic pressures ranging from 500 to 10000 psi. The specimens were fixed under corresponding pressures and their neuroepithelium was studied under light and electron microscopy. A pressure of 3000 psi, maintained for as long as 180 min, did not inhibit neurulation though it induced slight deformities of the neuroepithelium. A pressure of 4000 psi, applied for 180 min, disrupted the apical ring of microfilaments and blocked neurulation. The cells lost their dissymmetry. The effect was reversible. Lengthening the duration of treatment to 330 min caused the neuroepithelial cells to loose their microtubules and to become round. This situation was not reversible. Our results indicated that microfilaments are more sensitive than microtubules, that both organelles became increasingly sensitive as the exerted pressure was increased and that microtubules of older embryos exhibited a better resistance. Finally, we showed a correlation between the presence of microfilaments and the constricted state of the cellular apices and a relationship between the presence of microtubules and cell elongation.
The effects of high hydrostatic pressure on microfilaments and microtubules in Xenopus laevis
Paul-Emil Messier, C. Seguin; The effects of high hydrostatic pressure on microfilaments and microtubules in Xenopus laevis. Development 1 April 1978; 44 (1): 281–295. doi: https://doi.org/10.1242/dev.44.1.281
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3773)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Special Issue: The Immune System in Development and Regeneration
(update)-ImmuneSI.png?versionId=3773)
Our latest special issue is now complete. It showcases articles that add to the repertoire of immune cell functions during development, repair and regeneration, and provide insights into the developmental pathways leading to the generation and dispersal of these cells. You can watch recordings from our Development presents... webinar celebrating the special issue here.
Propose a new Workshop
-GSWorkshop.png?versionId=3773)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Preprints in Development
(update)-InPreprints.png?versionId=3773)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context. You can read the first article here.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3773)
Like the Node Network, the aim of the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.