The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.

The Dlx story began for J.L.R. in 1988 when, as a postdoc in Roland Ciaranello's lab, he launched a screen for developmental regulators in the mouse telencephalon. They devised a phagemid subtractive hybridization method to enrich for cDNAs preferentially expressed in the embryonic telencephalon, the most anterior part of the forebrain, compared with the adult telencephalon (Rubenstein et al., 1990). Called telencephalon-enriched genes (Tes) genes (Rubenstein et al., 1994; Bulfone et al., 2005), the first gene picked at random was called Tes1. J.L.R.’s student Matt Porteus also discovered Tes1 using low stringency hybridization to a cDNA library with a homeobox probe (Porteus et al., 1991). Because the Tes1 mouse homeobox gene was related to Distal-less in Drosophila, Tes1 was renamed Dlx2. In 1991, two other groups identified Dlx1 and Dlx2 (Price et al., 1991; Robinson et al., 1991). Soon thereafter, the full vertebrate Dlx family was discovered in zebrafish, Xenopus, chicken, mouse and human (Panganiban and Rubenstein, 2002).

There are six Dlx genes in mammals (Dlx1, Dlx2, Dlx3, Dlx4, Dlx5 and Dlx6) and more in other vertebrates. The vertebrate Dlx family comprises sets of bi-gene pairs (Fig. 1A). It is likely that a single distal-less (Dlx) gene was part of an old NKL cluster that also contained ancestors for genes of the Msx and Nkx families, among others (Pollard and Holland, 2000). The single Dlx gene would have undergone a duplication accompanied by an inversion to generate an ancestral bi-gene. This might have happened before the appearance of vertebrates, as such an arrangement is found in the urochordate Ciona intestinalis (Di Gregorio et al., 1995). An ancestral Dlx bi-gene then went through two rounds of genome duplication, followed by the loss of one bi-gene, resulting in the three bi-genes now found in mammals. Dlx bi-genes are often structurally linked to the Hox clusters, with Dlx1 and Dlx2 linked to HoxD, Dlx5 and Dlx6 linked to HoxA, and Dlx3 and Dlx4 linked to HoxB (Amores et al., 1998; Zerucha and Ekker, 2000).

Fig. 1.

Mouse Dlx loci and their encoded proteins. (A,B) Genomic organization and structure of the mouse genes Dlx1-6. (A) Genomic organization of the three Dlx bi-genes of the mouse. The DlxA genes (Dlx2, Dlx3 and Dlx5) are shown on the left and the DlxB genes (Dlx1, Dlx4 and Dlx6) are shown on the right, to reflect a likely ancestral bi-gene. The three exons of each Dlx are shown as boxes, with coding regions in black and the untranslated regions (UTRs) in white. Some of the upstream and intergenic regulatory elements are shown as colored boxes. Anti-sense transcripts for Dlx1 and Dlx6 are indicated. (B) Schematic of the six mouse DLX proteins. Blue, homeodomain; green, a poly-histidine stretch in the C-terminal of Dlx2; orange, a 20 amino acid (AA) domain that is highly conserved between the DLX2, DLX3 and DLX5 proteins of various vertebrates; red, a domain that overlaps the N-terminal part of the DLX1 homeodomain and that binds to RBBP4/7 proteins (DLX2, DLX3, DLX4, DLX5 and DLX6 have identical or nearly identical domains; Price et al., 2022); pale blue, a poly-glutamine-poly-proline repeat near the N terminus of DLX6.

Fig. 1.

Mouse Dlx loci and their encoded proteins. (A,B) Genomic organization and structure of the mouse genes Dlx1-6. (A) Genomic organization of the three Dlx bi-genes of the mouse. The DlxA genes (Dlx2, Dlx3 and Dlx5) are shown on the left and the DlxB genes (Dlx1, Dlx4 and Dlx6) are shown on the right, to reflect a likely ancestral bi-gene. The three exons of each Dlx are shown as boxes, with coding regions in black and the untranslated regions (UTRs) in white. Some of the upstream and intergenic regulatory elements are shown as colored boxes. Anti-sense transcripts for Dlx1 and Dlx6 are indicated. (B) Schematic of the six mouse DLX proteins. Blue, homeodomain; green, a poly-histidine stretch in the C-terminal of Dlx2; orange, a 20 amino acid (AA) domain that is highly conserved between the DLX2, DLX3 and DLX5 proteins of various vertebrates; red, a domain that overlaps the N-terminal part of the DLX1 homeodomain and that binds to RBBP4/7 proteins (DLX2, DLX3, DLX4, DLX5 and DLX6 have identical or nearly identical domains; Price et al., 2022); pale blue, a poly-glutamine-poly-proline repeat near the N terminus of DLX6.

Dlx nucleotide and DLX protein sequences are highly conserved across vertebrates, including conserved homeodomain DNA-binding domains (Fig. 1B). Each Dlx gene pair has three exons (all with protein-coding domains), with the homeodomain split between exons 2 and 3 (Fig. 1A). The Drosophila Dll gene has an intron at the identical location within the homeobox (Ellies et al., 1997a,b; Vachon et al., 1992). The Dlx2, Dlx3 and Dlx5 paralogues (defined here as DlxA genes) share a similar sequence, whereas the Dlx1, Dlx4 and Dlx6 paralogues (DlxB genes) are similar to each other. The pairs of Dlx genes have converging transcription (indicated by arrows in Fig. 1A). Dlx genes can have multiple transcripts, either due to alternative transcription initiation [e.g. Dlx1 (McGuinness et al., 1996)] or due to alternative splicing [e.g. Dlx4 (previously called Dlx7) and Dlx5 (Liu et al., 1997; Nakagawa et al., 1996; Yang et al., 1998)]. Alternative Dlx5 transcripts encode proteins both with and without the homeodomain and nuclear localization signal (Liu et al., 1997; Yang et al., 1998). Dlx bi-gene clusters also express antisense transcripts (Fig. 1A), the functions of which are mentioned below (Liu et al., 1997; Feng et al., 2006). The Dlx5/6 locus antisense RNA (known alternatively as Evf2, Dlx6os1 or Dlx6as) is an ultraconserved long non-coding RNA (lncRNA; not shown in Fig. 1A) that binds DLX proteins, forming a repressive complex (containing MeCP2) when interacting with specific enhancers (Feng et al., 2006; Bond et al., 2009).

Dlx genes play dual regulatory roles, activating transcriptional programs necessary for specific developmental programs in the forebrain and other organ systems (Table 1), while also repressing programs associated with alternative fates. The in vivo DLX motif bound by DLX1, DLX2 and DLX5 has been defined using chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) from nuclei of developing mouse forebrain (Lindtner et al., 2019). Although their consensus TAATTA motif is nearly identical, there is sequence divergence at the start and end of the core region and in flanking sequences. The non-homeodomain sequences of DLXA and DLXB proteins differ (Liu et al., 1997; Panganiban and Rubenstein, 2002).

Table 1.

Dlx expression and function outside of the forebrain

Dlx expression and function outside of the forebrain
Dlx expression and function outside of the forebrain

Here, we first describe the expression and role of Dlx genes during mammalian forebrain development. We then discuss how Dlx genes are regulated at a transcriptional and functional level through their enhancers, by cofactor protein-protein interactions, and through the regulation of target gene transcriptional activity. We integrate these data to propose a gene regulatory network downstream of the Dlx genes in the developing basal ganglia. Finally, we address many of the areas where more work is needed to fully elucidate their story in driving development, evolution and in maintaining health.

A fundamental principle is that the Dlx genes are expressed in forebrain GABAergic regions and cell types. The forebrain has multiple subdivisions, including the cortex, basal ganglia and hypothalamus, which have roles in cognition, sensory perception, movement and the homeostatic control of body and brain physiology (Rubenstein and Puelles, 2004; Rubenstein and Rakic, 2020). Unlike earlier discovered families of homeobox transcription factors (TFs) (e.g. Hox and Engrailed), which are expressed in the spinal cord, hindbrain and midbrain, the expression of the Dlx genes in the central nervous system (CNS) is restricted to the forebrain. Dlx genes are also expressed outside of the CNS in other tissues, summarized in Table 1. In situ RNA hybridization, immunohistochemistry and Dlx enhancer activity analyses have shown that Dlx expression is restricted to two forebrain domains: one telencephalic [subcortical (subpallial)] and one extending from the prethalamus to the rostral end of the hypothalamus (Porteus et al., 1991; Bulfone et al., 1993; Puelles et al., 2021, 2023) (Fig. 2A).

Fig. 2.

Dlx gene expression patterns. (A) Dlx1, Dlx2, Dlx5 and Dlx6 RNA expression in the mouse E13.5 forebrain. Sagittal sections. Differentiation layers: MZ, mantle zone; SVZ, subventricular zone; VZ, ventricular zone. (B) Dlx2 expression at E11.5, E13.5 and E18.5 in the mouse. Telencephalon: Cx, cortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; OB, olfactory bulb; Str, striatum. Diencephalon: PrT, prethalamus; Hy, hypothalamus. BA1, branchial arch 1; BA2, branchial arch 2. Pictures from Allen Developing Mouse Brain Atlas.

Fig. 2.

Dlx gene expression patterns. (A) Dlx1, Dlx2, Dlx5 and Dlx6 RNA expression in the mouse E13.5 forebrain. Sagittal sections. Differentiation layers: MZ, mantle zone; SVZ, subventricular zone; VZ, ventricular zone. (B) Dlx2 expression at E11.5, E13.5 and E18.5 in the mouse. Telencephalon: Cx, cortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; OB, olfactory bulb; Str, striatum. Diencephalon: PrT, prethalamus; Hy, hypothalamus. BA1, branchial arch 1; BA2, branchial arch 2. Pictures from Allen Developing Mouse Brain Atlas.

Deployment of Dlx forebrain expression follows a strict temporal pattern of Dlx2, Dlx1, Dlx5 and then Dlx6 (Liu et al., 1997; Eisenstat et al., 1999; Su-Feher et al., 2022). Forebrain expression begins at ∼E9.5: Dlx2 and Dlx1 are expressed in neural progenitors scattered in the ventricular zone (VZ), becoming denser over development. Then, Dlx1, Dlx2, Dlx5 and Dlx6 are co-expressed in most secondary progenitors of subventricular zones (SVZ) 1 and 2. Dlx1- and Dlx6-antisense transcripts are found in the SVZ and neurons in the mantle zone (MZ) (Fig. 2A). Dlx3 and Dlx4 have not been detected in the developing forebrain.

As neurons are generated, migrate and mature, Dlx1, Dlx2, Dlx5 and Dlx6 continue to be expressed in the MZ in many forebrain GABA cell types, including in the striatum (medium spiny neurons and interneurons), the pallidum (globus pallidus), the preoptic area, the septum, and GABAergic nuclei of the amygdala, hypothalamus and prethalamus (Wang et al., 2011a,b; Puelles et al., 2021, 2023) (Fig. 2A). GABAergic neurons are the principal source of neural inhibition and thus play a central role in regulating virtually all brain circuits. Importantly, the Dlx genes are also expressed in GABAergic local circuit neurons in the pallium (olfactory bulb/cortex, neocortex and hippocampus) (Anderson et al., 1997a,b; Stühmer et al., 2002a,b; Cobos et al., 2005; Long et al., 2007). Whereas some cells express all four forebrain Dlx genes, some have cell-type-specific patterns. For example, Dlx5 and Dlx6 are expressed in the central nucleus of the amygdala, whereas Dlx1 and Dlx2 are expressed in the intercalated amygdalae nuclei (Wang et al., 2011a,b). Dlx1 is expressed early in the lineage-generating parvalbumin+ cortical interneurons (CINs) and is then downregulated in these cells but maintained in other CINs (Cobos et al., 2005; Pla et al., 2018) (Fig. 2A,B).

Distal enhancers

Dlx enhancers flank and are embedded within the non-coding regions of the Dlx bi-gene pairs. They are described as ultraconserved because their nucleotide sequences have changed little during vertebrate evolution (Bejerano et al., 2004). For example, within the Dlx1-Dlx2 locus, there are at least four enhancers: URE1, URE2 (upstream regulator element) both 5′ of Dlx1, I12b (intergenic), and an enhancer just 5′ of Dlx2 (Thomas et al., 2000; Ghanem et al., 2007) (Fig. 1A). The Dlx5-Dlx6 locus also has intergenic enhancers (I56i and I56ii) (Zerucha et al., 2000; Stühmer et al., 2002a,b) (Fig. 1A).

In transgenic mice, these enhancers have robust and reproducible activity that matches endogenous Dlx RNA and protein expression in the forebrain, especially in the ganglionic eminences (Ghanem et al., 2007; Zerucha et al., 2000; Stühmer et al., 2002a,b). URE2 is remarkable for its activity in the VZ; I12b and I56i are striking because their activity is maintained in maturing cortical interneurons and can be used as enhancers for Cre-Drivers (Stenman et al., 2003; Potter et al., 2009), as well as for lentiviral and AAV vectors that drive expression in Dlx-expressing cell types (GABAergic interneurons) in the cerebral cortex of several mammalian species (Arguello et al., 2013; Lee et al., 2014; Dimidschstein et al., 2016; Mich et al., 2021).

Genome sequencing of autistic individuals has identified a point mutation in the I56i enhancer that alters a homeodomain motif (Hamilton et al., 2005) and decreases the enhancer's activity in a transgenic assay (Poitras et al., 2010). Such results reflect the importance of regulatory element mutations in human disease, as well as their known role in evolution.

Forebrain phenotypes in mice with Dlx enhancer deletions

Deleting Dlx1/2 (i.e. I12b) and Dlx5/6 (i.e. I56i, I56ii) mouse enhancers (Fig. 1) has identified specific and redundant functions in homozygotes and compound mutants. I56ii deletion reduces Dlx5/6 expression, as well as Ebf1, Isl1 and Meis2 expression between the lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE) (Fazel-Darbandi et al., 2016). I56i deletion, or mice with an I56i point mutation in a homeodomain motif identified in an individual with autism (Hamilton et al., 2005; Poitras et al., 2010), exhibit reduced Dlx5/6 expression and transient reduction of LGE Gad65 expression (Fazel-Darbandi et al., 2021). The deletion of I12b reduces Dlx1/2 expression but otherwise lacks a clear phenotype. On the other hand, I56i/, I12b/ mutants show a >2-fold reduction in Dlx1, Dlx2, Dlx5 and Dlx6 RNA, have increased sociability and a reduced response in fear conditioning (Fazel-Darbandi et al., 2021). Thus, modest Dlx expression changes during the development of forebrain GABAergic neurons can have important ramifications for behavior.

Upstream of Dlx

DLX1, DLX2 and DLX5 all bind to the Dlx5/6 (I56i, I56ii) enhancers, consistent with Dlx1/2 regulation of Dlx5 and Dlx6 (Long et al., 2009a); it is not known whether DLX5 autoregulates its expression. Analysis of Ascl1, Gsx2 and Otx2 TF mouse mutants show that these TFs promote Dlx expression in the developing telencephalon (Long et al., 2009a; Wang et al., 2013; Hoch et al., 2015). Our TF ChIP-seq supports the hypothesis for direct regulation of GSX2 and OTX2 on Dlx1/2 (URE2, I12b) and ASCL1, GSX2 and OTX2 on Dlx5/6 (I56i) enhancers (Catta-Preta et al., 2023 preprint). Furthermore, analyses of protein-DNA interactions provide evidence of a direct role for ASCL1 in activating the I12b Dlx1/2 enhancer (Poitras et al., 2007).

Dlx1 and Dlx2

Beginning in 1995, a series of papers described how loss-of-function deletions in the Dlx genes alter mouse development, including several general findings in the forebrain (for studies in other tissues see Table 1). First, Dlx1 and Dlx2 induce Dlx5 and Dlx6; once Dlx5 and Dlx6 expression is established, Dlx1 and Dlx2 are not required to maintain their expression (Anderson et al., 1997a; Pla et al., 2018). Second, there is partial functional redundancy between the Dlx genes in many cell types; Dlx single mutants have modest phenotypes (e.g. Dlx1−/−, discussed below), whereas Dlx1/2−/− and Dlx5/6−/− mutants have strong forebrain phenotypes. For example, the germline (constitutive) Dlx1/2 mutant lacks Dlx5 and Dlx6 expression and partially blocks the differentiation of GABAergic neurons (in part owing to increased Notch signaling and increased oligodendrogenesis), leading to hypoplasia of the striatum and other parts of the basal ganglia (Anderson et al., 1997a; Yun et al., 2002; Long et al., 2009a,b; Petryniak et al., 2007). The constitutive Dlx1/2 mutant has revealed that the embryonic basal ganglia [e.g. MGE and caudal ganglionic eminence (CGE)] are the source of most, if not all, mouse GABAergic CINs, as well as hippocampal (HINs) and striatal interneurons (SINs). Most of these interneurons fail to migrate to the cortex in Dlx1/2−/− mutants (Anderson et al., 1997a,b; Pleasure et al., 2000; Marín et al., 2000). In addition, mutations in Dlx genes impair the development of interneurons destined for the olfactory bulb (Bulfone et al., 1998; Long et al., 2007; Long et al., 2007; Guo et al., 2019).

RNA-seq analysis of Dlx1/2−/− at embryonic day (E)15.5 has identified ∼60 TFs and non-TFs with either increased or decreased expression in the ganglionic eminences (Long et al., 2009a,b). In situ hybridization has been used to define cell types along the VZ-SVZ-MZ differentiation axis where these TFs have expression changes, setting the stage for deciphering Dlx-driven transcriptional pathways. More recently, the use of DLX-ChIP-seq has identified promoters and enhancers bound by DLX proteins (Lindtner et al., 2019; see below).

Dlx1 and Dlx2 strongly regulate a core set of genes (Fig. 3). They promote the expression of Arx, Cxcr4, Cxcr7 (Ackr3), Erbb4, ER81 (Etv1), GAD1, GAD2, Gucy1b3, Meis2, Slc32a1 (vGAT), Six3, Sp8, Tshz1 and Vax1, and repress Ascl1 (Mash1), Gsx2, Hes5, Nr2f1, Olig2 and Otx2 expression (Long et al., 2009a,b; Le et al., 2017). Mutations in many of these genes contribute to defects in GABAergic neuronal migration, differentiation and function (Colombo et al., 2007; Hoch et al., 2015; Flames et al., 2004; Long et al., 2009a,b; Mandal et al., 2013; Su et al., 2022; Wang et al., 2011a,b, 2013; Xu et al., 2018). Dlx1 and Dlx2 repression of Ascl1, Gsx1, Gsx2 and Olig2 has been further investigated by making triple mutants. Eliminating Ascl1 function from the Dlx1/2−/− mutants amplifies the loss of GABAergic fate (Long et al., 2009a) and the loss of Gsx2 function in Dlx1/2−/− mutants rescues increased Notch signaling and oligodendrogenesis (Wang et al., 2013). Likewise, eliminating Olig2 function from Dlx1/2−/− mutants rescues the increased oligodendrogenesis observed in Dlx1/2−/− double mutants (Petryniak et al., 2007). Furthermore, Dlx1 and Dlx2 directly promote Zfhx1b (Zeb2) TF expression; Zfhx1b mutants phenocopy the Dlx1/2−/− CIN defect. Zfhx1b functions in part by repressing Nkx2-1 in immature CINs, which is required to direct their migration to the cortex and away from the striatum (McKinsey et al., 2013).

Fig. 3.

Dlx gene regulatory network in the mouse ganglionic eminences. Gene regulatory network for DLX-regulated transcription factors (TFs) (blue) and DLX-regulated non-TF differentiation factors (orange) in mice. Each gene has DLX in vivo binding to either its promoter or candidate regulator elements (REs). Ventricular zone (VZ), subventricular zone (SVZ) and marginal zone (MZ) functions are separated into distinct radial sectors (different shades of grey). The effects of the Dlx1/2/ mutation are indicated in three nested circles. The outer circle reports RNA changes measured by in situ hybridization (IS). The middle circle reports changes in histone post-translational modifications ChIP-seq (H). The inner circle reports RNA-seq (R) changes. Red and green represent repressive and activating roles for DLX TFs on each assay, respectively. For histone changes, REs are assigned to the nearest transcription start site. Data from Long et al., 2009a,b, Lindtner et al., 2019. Figure from Lindtner et al., 2019.

Fig. 3.

Dlx gene regulatory network in the mouse ganglionic eminences. Gene regulatory network for DLX-regulated transcription factors (TFs) (blue) and DLX-regulated non-TF differentiation factors (orange) in mice. Each gene has DLX in vivo binding to either its promoter or candidate regulator elements (REs). Ventricular zone (VZ), subventricular zone (SVZ) and marginal zone (MZ) functions are separated into distinct radial sectors (different shades of grey). The effects of the Dlx1/2/ mutation are indicated in three nested circles. The outer circle reports RNA changes measured by in situ hybridization (IS). The middle circle reports changes in histone post-translational modifications ChIP-seq (H). The inner circle reports RNA-seq (R) changes. Red and green represent repressive and activating roles for DLX TFs on each assay, respectively. For histone changes, REs are assigned to the nearest transcription start site. Data from Long et al., 2009a,b, Lindtner et al., 2019. Figure from Lindtner et al., 2019.

Postnatally, Dlx1 and Dlx1/2 promote GABA production and packaging (through Gad1, Gad2 and vGat), dendritogenesis and synaptogenesis. Dlx1/2−/− mutants have electrophysiological defects including reduced excitatory drive (Pla et al., 2018). Perhaps secondarily to these problems, postnatal mutant mice have CIN apoptosis and develop epilepsy (Cobos et al., 2005; Jones et al., 2011). Further to the CIN dysfunction, there are also defects in circuit function in the auditory and visual cortex (Mao et al., 2012; Seybold et al., 2012). Remarkably, transplantation of wild-type CIN into Dlx1−/− partially rescues their electrophysiology status (Howard et al., 2014), further strengthening the evidence that proper interneuron numbers and function are crucial to achieve an appropriate excitatory/inhibitory balance (Merzenich and Rubenstein, 2003; Sohal and Rubenstein, 2019).

Dlx5 and Dlx6

Less is known about the function of Dlx5 and Dlx6 in the forebrain compared with Dlx1 and Dlx2. Consistent with their later expression than Dlx1/2 (see above), Dlx5 and Dlx6 are implicated in promoting differentiation by repressing cell division at the G1/S checkpoint (MacKenzie et al., 2019).

Dlx5/6−/− constitutive mutants have exencephaly (due to their craniofacial functions), complicating the interpretation of their forebrain phenotypes. Although early basal ganglia differentiation showed no definitive phenotype, the tangential migration of MGE-derived CINs appeared to be attenuated, perhaps owing to reduced Cxcr4 expression (Wang et al., 2010). MGE transplantation suggested a reduction in parvalbumin+ CINs in Dlx5−/−and Dlx5/6−/− mutants. Consistent with this, Dlx5/6+/− adult mice have defects in fast-spiking parvalbumin+ CINs, which are associated with defects in gamma rhythms and cognitive function (Cho et al., 2015). Dlx6−/− mutants have subtle RNA expression defects in basal ganglia nuclei (striatum, nucleus accumbens and central nucleus of the amygdala) (Wang et al., 2011a,b).

Conditional deletion of Dlx5 and Dlx6 using Vgat-Cre (active in the entire CNS) results in a variety of behavioral phenotypes (e.g. hypervocalization and hypersocialization, anxiety, locomotion and nest building) and physiological phenotypes (reduced weight and extended lifespan) (de Lombares et al., 2019; Levi et al., 2021, 2022; Aouci et al., 2022). These are thought to reflect Dlx5 and Dlx6 forebrain GABAergic functions, including in cortical parvalbumin+ interneurons.

The interactome of DLX proteins is just beginning to be understood. Co-immunoprecipitation analyses have not provided evidence that the DLX paralogues bind each other. On the other hand, the DLX proteins interact with the nucleosome remodeling and deacetylase (NuRD) complex and the BAF complex (Cajigas et al., 2015, 2021; Price et al., 2022). A mass spectroscopy screen has provided evidence that DLX1 binds to RBBP4, a component of the NuRD chromatin remodeling complex (Price et al., 2022). In vitro and in vivo analyses have found that both RBBP4 and RBBP7 interact with DLX amino acids (AA) adjacent to the homeodomain that are part of the nuclear localization signal (Price et al., 2022). DLX1, RBBP4 and RBBP7, as well as other members of the NuRD complex (e.g. CHD4, HDAC1, HDAC2, MBD3), are found at an overlapping set of genomic loci using ChIP-seq in E13.5 mouse subpallium (Price et al., 2022). Furthermore, RBBP4 or RBBP7 shows the highest correlation with DLX1 and DLX2 bound loci, and they share the TAATT DLX homeodomain motif, providing evidence that DLX guides the DLX/RBBP complex to specific chromosomal loci. DLX-RBBP co-bound loci are largely intronic or intergenic and rarely at promoters. These loci are associated with genes with an altered expression in Dlx1/2−/− mutants: increased (e.g. Otx2, Sall3) or decreased (e.g. Arx, Sp8). Rbbp7 conditional null mice (using Nkx2-1-Cre to delete in the MGE), in a Rbbp4+/− background, phenocopy aspects of Dlx1/2−/− mutants, including reduced output of CIN from the MGE (Price et al., 2022).

Mass spectrometry of proteins from the embryonic mouse forebrain and biochemical analyses have provided evidence that the Evf2-DLX1 ribonucleoprotein complex also contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1; SMARCA4), Brahma-associated factor (BAF170; SMARCC2) and SOX2 (Cajigas et al., 2015, 2021). The N-terminal region of DLX5 interacts with the adaptor protein MAGE-D1 and with NDN (Ju et al., 2017). A yeast two-hybrid screen provided evidence that GRIP1, a PDZ cytoplasmic protein, interacts with DLX2 and promotes the activity of DLX2 and DLX5, but not DLX1 (Yu et al., 2001). Going forward, a more comprehensive understanding of the DLX protein-protein interactions and functions will be essential to fully understand how these TFs regulate transcription.

The DLX target homeobox motif features a core TAATT sequence flanked by additional preferred bases, which was identified via comparative genomics and functional studies (Feledy et al., 1999; Zerucha et al., 2000). DLX ChIP-seq has since identified in vivo DLX-genomic interactions (Zhou et al., 2004; Lindtner et al., 2019). DLX1, DLX2 and DLX5 ChIP-seq of the E11.5, E13.5 and E16.5 mouse ganglionic eminences have shown that the three proteins bound very similar loci with TAATTA core motifs (Lindtner et al., 2019). DLX TFs bind to both promoters and distal regions in embryonic mouse basal ganglia, with the majority (∼80%) of binding sites at presumed distal enhancer elements. Motifs for other TFs are also present at these loci and most correspond to TF families that function in the developing basal ganglia.

To build a detailed genomic perspective of how DLX drives forebrain development, we have applied DLX ChIP-seq paired with characterization of the epigenomic and transcriptional state in wild-type and Dlx1/2−/− mutant mice (Lindtner et al., 2019; Catta-Preta et al., 2023 preprint). Dlx1/2−/− exhibits both increased expression of some genes and decreased expression of others, based on RNA expression array, RNA-seq and histochemical analyses (Long et al., 2009a,b; Lindtner et al., 2019), consistent with DLX TFs having dual context-dependent functionality of driving transcriptional activation or repression. To explore genomic correlates of this dichotomy, we have performed histone ChIP-seq for histone modifications associated with gene activation (H3K27ac, H3K4me1, H3K4me3) or gene repression (H3K27me3) (Lindtner et al., 2019) in wild-type and Dlx1/2−/− mice. This approach has revealed a subset of DLX binding events in which the absence of DLX binding results in the loss of activation or repression of the regulatory target genes. DLX-bound enhancers near downregulated genes are marked by a reduced ratio of activating:repressing histones, which have been termed activating regulator elements (a.REs). By contrast, those enhancers near upregulated genes and marked by an increased ratio of activating:repressing histones in the Dlx1/2−/− mutant mice have been termed repressing regulator elements (r.REs).

Genes with strong expression changes in Dlx1/2−/− are typically located in genomic intervals with one or several a.REs or r.REs. There is a close correlation of decreased RNA expression with a.REs, and increased RNA expression with r.REs. r.RE targets are enriched for TF genes (e.g. Gsx1, Otp, Pax7), whereas a.RE targets include a combination of TF genes (e.g. Dlx5, Sp8) and genes controlling GABAergic neuron maturation and function (e.g. Gad2, vGAT, Nrxn3). The Arx locus is paradigmatic; it has enhancers with either cortical [hs122 (Rr43), hs123 (Rr44)] or subcortical (hs119 (Rr41), hs121 (Rr3)] activity (Dickel et al., 2018). Although DLX1, DLX2 and DLX5 bind all four enhancers, they only activate transcription from the subcortical enhancers (Lindtner et al., 2019). Overall, a.RE enhancers are enriched for basic Helix-Loop-Helix (bHLH) and DLX-type homeodomain motifs, whereas r.RE enhancers are enriched for Forkhead and OTX/GSC-type homeodomain motifs (Lindtner et al., 2019), indicating that combinatorial binding of DLX and partner TFs encodes activation versus repressive control.

To dissect how combinatorial binding by DLX factors with other TFs drives the spatiotemporal specificity of telencephalic enhancer activity, we have generated TF in vivo binding data (ARX, ASCL1, DLX1, DLX2, DLX5, GSX2, LHX6, NKX2-1, OTX2, PBX1, SP9) and intersected it with in vivo enhancer activity at E11-E12 in transgenic mice. For this study, we have used previously reported subpallial enhancers (Ghanem et al., 2003, 2007; Visel et al., 2013) and novel enhancers that were chosen based on ChIP-seq experiments using the TFs listed above (Catta-Preta et al., 2023 preprint). We found that enhancers most likely to have specific subpallial activity had combinatorial binding of multiple of these TFs, are strongly evolutionarily conserved and are enriched for homeodomain motifs (TAATTA). We also identified several combinatorial TF-enhancer modules that were associated with different neurodevelopmental processes. For example, enhancers bound by DLX2, ARX and LHX6 are associated with GABAergic neuronal maturation genes, whereas DLX2, GSX2 and OTX2 combinatorial binding is found at enhancers that had activity in neural progenitors in the VZ. The molecular interactions that determine how combinatorial binding confers specificity remain unknown, but the DLX proteins have a central role in this process.

By integrating transcriptomic and epigenomic data from the Dlx mutants, and cis-regulatory data from enhancer assays and in vivo DLX genomic binding, we are making in-roads to elucidate a gene regulatory network upstream and downstream of the Dlx genes.

Genomic studies of DLX regulatory function revealed several generalized features: DLX proteins bind directly to a shared set of regulatory targets that feature TAATTA consensus or degenerative motifs; DLX regulatory target genes with altered expression in Dlx1/2−/− mutants feature clustered DLX binding and deeply evolutionarily conserved enhancers with multiple TAATTA motifs; DLX TFs repress alternative developmental transcriptional programs and activate subpallial neurogenic fates via context-dependent combinatorial binding with other developmentally-active TFs. Given that the DLX proteins are expressed first in neuronal progenitors and then in postmitotic neurons, and that DLX interactions at a.RE and r.RE are crucial for activation and repression of fate-specification genes, DLX factors appear to play a uniquely central role in initiating and maintaining forebrain (GABAergic) neuronal fate properties from development through adulthood. Integrating the transcriptional changes in the Dlx mutants, with the identification of candidate enhancers and promoters for these genes, has enabled the postulation of Dlx-regulated gene regulatory networks in progenitors (VZ, SVZ) and neurons (MZ) of the developing basal ganglia (Lindtner et al., 2019). When coupled with similar approaches for the TFs upstream and downstream of Dlx, one can assemble a more complete view of the transcriptional circuits; these pathways are important for predicting the effect of disease-causing mutations.

Going forward, much more needs to be known about DLX biochemistry and the functions of the non-homeodomain regions, such as the DLX2 C-terminal poly-histidine tract (Porteus et al., 1991), and the DLX6 CAG/CCG (poly-glutamine/poly-proline) repeat region in exon 1 (Pfeffer et al., 2001) (Fig. 1B). The DLXA proteins (DLX2, DLX3, DLX5; Fig. 1B) also contain a region of about 20 AA that is well conserved across species (Akimenko et al., 1994; Liu et al., 1997). Given the importance of DLX combinatorial binding for driving enhancer specificity, structural analyses are needed to elucidate: (1) the organization of the TF complexes with DNA, transcriptional cofactors and perhaps RNAs; (2) how these relate to activation versus repression; (3) how these relate to the stabilization/formation of 3D interactions and their nuclear localization. A better understanding of the non-homeodomain protein structures of DLX TFs should also provide insights into the redundant and distinct roles of co-expressed DLX bi-gene pairs and the differences between the DlxA and DlxB paralog groups.

There is also a lack of understanding regarding the selectivity of DLX targets considering the common occurrence of the TAATTA motif in the genome and regarding the functional relevance of DLX TF binding events. We found that DLX genomic binding in the forebrain extends to many loci beyond Dlx1/2−/− knockout-responsive a.RE/r.RE elements. Currently, nothing is known about the functions of loci bound by DLX but that show no phenotype in Dlx1/2−/− mutants – perhaps they prefigure functions in other cell states or they are evolutionary vestiges/inventions. As work on the DLX TF genomic targets is currently limited to the forebrain, comparative studies of DLX genomic binding in other tissues are needed and will help answer questions regarding context-dependent DLX TF regulatory function and conserved or divergent regulatory programming across relevant mammalian organ systems and cell types.

This article is part of the collection ‘40 years of the homeobox’. See related articles in this collection at https://journals.biologists.com/dev/collection/10249/40-years-of-the-homeobox.

Funding

J.L.R. is supported by the National Institute of Mental Health (MH049428 and MH081880). M.E. is supported by the Natural Sciences and Engineering Research Council of Canada (Discovery grant 121795). A.S.N. is supported by the National Institute of General Medical Sciences (R35GM119831). Deposited in PMC for release after 12 months.

Acampora
,
D.
,
Merlo
,
G. R.
,
Paleari
,
L.
,
Zerega
,
B.
,
Postiglione
,
M. P.
,
Mantero
,
S.
,
Bober
,
E.
,
Barbieri
,
O.
,
Simeone
,
A.
and
Levi
,
G.
(
1999
).
Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5
.
Development
126
,
3795
-
3809
.
Akimenko
,
M.-A.
,
Ekker
,
M.
,
Wegner
,
J.
,
Lin
,
W.
and
Westerfield
,
M.
(
1994
).
Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head
.
J. Neurosci.
14
,
3475
-
3486
.
Amores
,
A.
,
Force
,
A.
,
Yan
,
Y.-L.
,
Joly
,
L.
,
Amemiya
,
C.
,
Fritz
,
A.
,
Ho
,
R. K.
,
Langeland
,
J.
,
Prince
,
V.
,
Wang
,
Y.-L.
et al. 
(
1998
).
Zebrafish hox clusters and vertebrate genome evolution
.
Science
282
,
1711
-
1714
.
Anderson
,
S. A.
,
Eisenstat
,
D.
,
Shi
,
L.
and
Rubenstein
,
J. L. R.
(
1997a
).
Interneuron migration from basal forebrain: dependence on Dlx genes
.
Science
278
,
474
-
476
.
Anderson
,
S. A.
,
Qiu
,
M.
,
Bulfone
,
A.
,
Eisenstat
,
D.
,
Meneses
,
J. J.
,
Pedersen
,
R. A.
and
Rubenstein
,
J. L. R.
(
1997b
).
Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late-born striatal cells
.
Neuron
19
,
27
-
37
.
Aouci
,
R.
,
El Soudany
,
M.
,
Maakoul
,
M. Z.
,
Fontaine
,
A.
,
Kurihara
,
H.
,
Levi
,
G.
and
Narboux-Nême
,
N.
(
2022
).
Dlx5/6 expression levels in mouse GABAergic neurons regulate adult parvalbumin neuronal density and anxiety/compulsive behaviours
.
Cells
11
,
1739
-
1755
.
Arguello
,
A.
,
Yang
,
X.
,
Vogt
,
D.
,
Stanco
,
A.
,
Rubenstein
,
J. L.
and
Cheyette
,
B. N.
(
2013
).
Dapper antagonist of catenin-1 cooperates with Dishevelled-1 during postsynaptic development in mouse forebrain GABAergic interneurons
.
PLoS ONE
8
,
676
-
679
.
Bejerano
,
G.
,
Pheasant
,
M.
,
Makunin
,
I.
,
Stephen
,
S.
,
James
,
W.
,
Kent
,
J.
,
Mattick
,
S.
and
Haussler
,
D.
(
2004
).
Ultraconserved elements in the human genome
.
Science
304
,
1321
-
1325
.
Bellessort
,
B.
,
Le Cardinal
,
M.
,
Bachelot
,
A.
,
Narboux-Nême
,
N.
,
Garagnani
,
P.
,
Pirazzini
,
C.
,
Barbieri
,
O.
,
Mastracci
,
L.
,
Jonchere
,
V.
,
Duvernois-Berthet
,
E.
et al. 
(
2016
).
Dlx5 and Dlx6 control uterine adenogenesis during post-natal maturation: possible consequences for endometriosis
.
Hum. Mol. Genet.
25
,
97
-
108
.
Beverdam
,
A.
,
Merlo
,
G. R.
,
Paleari
,
L.
,
Mantero
,
S.
,
Genova
,
F.
,
Barbieri
,
O.
,
Janvier
,
P.
and
Levi
,
G.
(
2002
).
Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past?
Genesis
34
,
221
-
227
.
Bond
,
A. M.
,
Vangompel
,
M. J.
,
Sametsky
,
E. A.
,
Clark
,
M. F.
,
Savage
,
J. C.
,
Disterhoft
,
J. F.
and
Kohtz
,
J. D.
(
2009
).
Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry
.
Nat. Neurosci.
12
,
1020
-
1027
.
Bulfone
,
A.
,
Puelles
,
L.
,
Porteus
,
M. H.
,
Frohman
,
M. A.
,
Martin
,
G. R.
and
Rubenstein
,
J. L. R.
(
1993
).
Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries
.
J. Neuroscience.
13
,
3155
-
3172
.
Bulfone
,
A.
,
Wang
,
F.
,
Hevner
,
R.
,
Anderson
,
S.
,
Cutforth
,
T.
,
Chen
,
S.
,
Meneses
,
J.
,
Pedersen
,
R.
,
Axel
,
R.
and
Rubenstein
,
J. L. R.
(
1998
).
An olfactory sensory map develops in the absence of normal projection neurons or gabaergic interneurons
.
Neuron
21
,
1273
-
1282
.
Bulfone
,
A.
,
Carotenuto
,
P.
,
Faedo
,
A.
,
Aglio
,
V.
,
Garzia
,
L.
,
Bello
,
A. M.
,
Basile
,
A.
,
Andre
,
A.
,
Cocchia
,
M.
,
Guardiola
,
O.
et al. 
(
2005
).
Telencephalic embryonic subtractive sequences: a unique collection of neurodevelopmental genes
.
J. Neuroscience.
25
,
7586
-
7600
.
Cajigas
,
I.
,
Leib
,
D. E.
,
Cochrane
,
J.
,
Luo
,
H.
,
Swyter
,
K. R.
,
Chen
,
S.
,
Clark
,
B. S.
,
Thompson
,
J.
,
Yates
,
J. R. I. I. I.
,
Kingston
,
R. E.
et al. 
(
2015
).
Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling
.
Development
142
,
2641
-
2652
.
Cajigas
,
I.
,
Chakraborty
,
A.
,
Lynam
,
M.
,
Swyter
,
K. R.
,
Bastidas
,
M.
,
Collens
,
L.
,
Luo
,
H.
,
Ay
,
F.
and
Kohtz
,
J. D.
(
2021
).
Sox2-Evf2 lncRNA-mediated mechanisms of chromosome topological control in developing forebrain
.
Development
148
,
dev197202
.
Catta-Preta
,
R.
,
Lindtner
,
S.
,
Ypsilanti
,
A.
,
Price
,
J.
,
Abnousi
,
A.
,
Su-Feher
,
L.
,
Wang
,
Y.
,
Juric
,
I.
,
Jones
,
I. R.
,
Akiyama
,
J. A.
et al. 
(
2023
).
Combinatorial transcription factor binding encodes cis-regulatory wiring of forebrain GABAergic neurogenesis
.
bioRxiv
06.28.546894
.
Cho
,
K. K.
,
Hoch
,
R.
,
Lee
,
A. T.
,
Patel
,
T.
,
Rubenstein
,
J. L.
and
Sohal
,
V. S.
(
2015
).
Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in dlx5/6(+/-) mice
.
Neuron
85
,
1332
-
1343
.
Cobos
,
I.
,
Calcagnotto
,
M. E.
,
Vilaythong
,
A. J.
,
Noebels
,
J.
,
Baraban
,
S. C.
and
Rubenstein
,
J. L. R.
(
2005
).
Mice lacking the Dlx1 transcription factor exhibit subtype-specific loss of interneurons, reduced synaptic inhibition and epilepsy
.
Nat. Neurosci.
8
,
1059
-
1068
.
Colombo
,
E.
,
Collombat
,
P.
,
Colasante
,
G.
,
Bianchi
,
M.
,
Long
,
J.
,
Mansouri
,
A.
,
Rubenstein
,
J. L. R.
and
Broccoli
,
V.
(
2007
).
Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation
.
J. Neuroscience.
27
,
4786
-
4798
.
de Lombares
,
C.
,
Heude
,
E.
,
Alfama
,
G.
,
Fontaine
,
A.
,
Hassouna
,
R.
,
Vernochet
,
C.
,
de Chaumont
,
F.
,
Olivo-Marin
,
C.
,
Ey
,
E.
,
Parnaudeau
,
S.
et al. 
(
2019
).
Dlx5 and Dlx6 expression in GABAergic neurons controls behavior, metabolism, healthy aging and lifespan
.
Aging
11
,
6638
-
6656
.
de Melo
,
J.
,
Qiu
,
X.
,
Du
,
G.
,
Cristante
,
L.
and
Eisenstat
,
D. D.
(
2003
).
Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina
.
J. Comp. Neurol.
461
,
187
-
204
.
de Melo
,
J.
,
Du
,
G.
,
Fonseca
,
M.
,
Gillespie
,
L. A.
,
Turk
,
W. J.
,
Rubenstein
,
J. L. R.
and
Eisenstat
,
D. D.
(
2005
).
Dlx1 and Dlx2 function is necessary for terminal differentiation and survival of late-born retinal ganglion cells in the developing mouse retina
.
Development
132
,
311
-
322
.
de Melo
,
J.
,
Zhou
,
Q. P.
,
Zhang
,
Q.
,
Zhang
,
S.
,
Fonseca
,
M.
,
Wigle
,
J. T.
and
Eisenstat
,
D. D.
(
2008
).
Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development
.
Nucleic Acids Res.
36
,
872
-
884
.
Depew
,
M. J.
,
Liu
,
J. K.
,
Long
,
J. E.
,
Presley
,
R.
,
Meneses
,
J. J.
,
Pedersen
,
R. A.
and
Rubenstein
,
J. L. R.
(
1999
).
Dlx5 regulates regional development of the branchial arches and sensory capsules
.
Development
126
,
3831
-
3846
.
Depew
,
M. J.
,
Lufkin
,
T.
and
Rubenstein
,
J. L. R.
(
2002
).
Specification of jaw subdivisions by Dlx genes
.
Science
298
,
381
-
385
.
Depew
,
M.
,
Simpson
,
C. A.
,
Morasso
,
M.
and
Rubenstein
,
J. L. R.
(
2005
).
Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development
.
J. Anatomy
207
,
501
-
561
.
Dickel
,
D. E.
,
Ypsilanti
,
A. R.
,
Pla
,
R.
,
Zhu
,
Y.
,
Barozzi
,
I.
,
Mannion
,
B. J.
,
Khin
,
Y. S.
,
Fukuda-Yuzawa
,
Y.
,
Plajzer-Frick
,
I.
,
Pickle
,
C. S.
et al. 
(
2018
).
Ultraconserved enhancers are required for normal development
.
Cell
172
,
491
-
499
.
Di Gregorio
,
A.
,
Spagnuolo
,
A.
,
Ristoratore
,
F.
,
Pischetola
,
M.
,
Aniello
,
F.
,
Branno
,
M.
,
Cariello
,
L.
and
Di Lauro
,
R.
(
1995
).
Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster
.
Gene
156
,
253
-
257
.
Dimidschstein
,
J.
,
Chen
,
Q.
,
Tremblay
,
R.
,
Rogers
,
S. L.
,
Saldi
,
G. A.
,
Guo
,
L.
,
Xu
,
C.
,
Liu
,
R.
,
Lu
,
C.
,
Chu
,
J.
et al. 
(
2016
).
A viral strategy for targeting and manipulating interneurons across vertebrate species
.
Nat. Neurosci.
19
,
1743
-
1749
.
Eisenstat
,
D. D.
,
Liu
,
J. K.
,
Mione
,
M.
,
Zhong
,
W.
,
Yu
,
G.
,
Anderson
,
S. A.
,
Ghattas
,
I.
,
Puelles
,
L.
and
Rubenstein
,
J. L. R.
(
1999
).
DLX-1, DLX-2 and DLX-5 expression define distinct stages of basal forebrain differentiation
.
J. Comp. Neurol.
414
,
217
-
237
.
Ellies
,
D. L.
,
Stock
,
D. W.
,
Hatch
,
G.
,
Giroux
,
G.
,
Weiss
,
K. M.
and
Ekker
,
M.
(
1997a
).
Relationship between the genomic organization and the overlapping embryonic expression patterns of the zebrafish dlx genes
.
Genomics
45
,
580
-
590
.
Ellies
,
D. L.
,
Langille
,
R. M.
,
Martin
,
C. C.
,
Akimenko
,
M. A.
and
Ekker
,
M.
(
1997b
).
Specific craniofacial cartilage dysmorphogenesis coincides with a loss of dlx gene expression in retinoic acid-treated zebrafish embryos
.
Mech. Dev.
6
,
23
-
36
.
Fazel-Darbandi
,
S.
,
Poitras
,
L.
,
Monis
,
S.
,
Lindtner
,
S.
,
Yu
,
M.
,
Hatch
,
G.
,
Rubenstein
,
J. L.
and
Ekker
,
M.
(
2016
).
Functional consequences of I56ii Dlx enhancer deletion in the developing mouse forebrain
.
Dev. Biol.
[Epub ahead of print].
Fazel-Darbandi
,
S.
,
Esau
,
C.
,
Lesage-Pelletier
,
C.
,
Monis
,
S.
,
Poitras
,
L.
,
Yu
,
M.
,
Perin
,
S.
,
Hatch
,
G.
and
Ekker
,
M.
(
2021
).
Increased Sociability in Mice Lacking Intergenic Dlx Enhancers
.
Front. Neurosci.
15
,
718948
.
Feledy
,
J. A.
,
Morasso
,
M. I.
,
Jang
,
S. I.
and
Sargent
,
T. D.
(
1999
).
Transcriptional activation by the homeodomain protein distal-less 3
.
Nucleic Acids Res.
27
,
764
-
770
.
Feng
,
J.
,
Chunming
,
B.
,
Clark
,
B. S.
,
Mady
,
R.
,
Shah
,
P.
and
Kohtz
,
J. D.
(
2006
).
The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator
.
Genes Dev.
20
,
1470
-
1484
.
Flames
,
N.
,
Long
,
J.
,
Garratt
,
T.
,
Fischer
,
T.
,
Gassmann
,
M.
,
Birchmeier
,
C.
,
Lai
,
C.
,
Rubenstein
,
J. L. R.
and
Marín
,
O.
(
2004
).
Short- and long-range attraction of cortical GABAergic interneurons by Neuregulin1
.
Neuron
44
,
251
-
261
.
Ghanem
,
N.
,
Jarinova
,
O.
,
Amores
,
A.
,
Long
,
Q.
,
Hatch
,
G.
,
Park
,
B. K.
,
Rubenstein
,
J. L. R.
and
Ekker
,
M.
(
2003
).
Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters
.
Genome Res.
13
,
533
-
543
.
Ghanem
,
N.
,
Yu
,
M.
,
Long
,
J.
,
Hatch
,
G.
,
Rubenstein
,
J. L.
and
Ekker
,
M.
(
2007
).
Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons
.
J. Neurosci.
27
,
5012
-
5022
.
Guo
,
T.
,
Liu
,
G.
,
Du
,
H.
,
Wen
,
Y.
,
Wei
,
S.
,
Li
,
Z.
,
Tao
,
G.
,
Shang
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
et al. 
(
2019
).
Dlx1/2 are central and essential components in the transcriptional code for generating olfactory bulb interneurons
.
Cereb. Cortex
29
,
4831
-
4849
.
Hamilton
,
S. P.
,
Woo
,
J. M.
,
Carlson
,
E. J.
,
Ghanem
,
N.
,
Ekker
,
M.
and
Rubenstein
,
J. L. R.
(
2005
).
Analysis of four DLX homeobox genes in autistic probands
.
BMC Genet.
6
,
52
.
Heude
,
E.
,
Bouhali
,
K.
,
Kurihara
,
Y.
and
Levi
,
G.
(
2010
).
Jaw muscularization requires Dlx expression by cranial neural crest cells
.
Proc. Natl. Acad. Sci. USA
107
,
11441
-
11446
.
Hoch
,
R. V.
,
Lindtner
,
S.
,
Price
,
J. D.
and
Rubenstein
,
J. L.
(
2015
).
OTX2 transcription factor controls regional patterning within the medial ganglionic eminence and regional identity of the septum
.
Cell Rep.
12
,
3482
-
3494
.
Hojo
,
H.
,
Ohba
,
S.
,
He
,
X.
,
Lai
,
L. P.
and
McMahon
,
A. P.
(
2016
).
Sp7/Osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification
.
Dev. Cell
37
,
238
-
253
.
Howard
,
M. A.
,
Rubenstein
,
J. L.
and
Baraban
,
S. C.
(
2014
).
Bidirectional homeostatic plasticity induced by interneuron cell death and transplantation in vivo
.
Proc. Natl. Acad. Sci. USA
111
,
492
-
497
.
Jeong
,
J.
and
Rubenstein
,
J. L. R.
(
2013
).
Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate
.
Dev. Dyn.
241
,
1757
-
1769
.
Jeong
,
J.
,
Li
,
X.
,
McEvilly
,
R.
,
Rosenfeld
,
M.
,
Lufkin
,
T.
and
Rubenstein
,
J.
(
2008
).
Dlx genes pattern mammalian jaw primordium by regulating both lower jaw- and upper jaw-specific genetic programs
.
Development
135
,
2905
-
2916
.
Jones
,
D.
,
Howard
,
M.
,
Stanco
,
A.
,
Rubenstein
,
J. L. R.
and
Baraban
,
S.
(
2011
).
Deletion of Dlx1 results in reduced glutamatergic input to hippocampal interneurons
.
J. Neurophys.
105
,
1984
-
1991
.
Ju
,
H.
,
Lee
,
S.
,
Lee
,
J.
and
Ghil
,
S.
(
2017
).
Necdin modulates osteogenic cell differentiation by regulating Dlx5 and MAGE-D1
.
Biochem. Biophys. Res. Commun.
489
,
109
-
115
.
Kraus
,
P.
and
Lufkin
,
T.
(
2006
).
Dlx homeobox gene control of mammalian limb and craniofacial development
.
Am. J. Med. Genet. A
140
,
1366
-
1374
.
Le
,
T. N.
,
Zhou
,
Q. P.
,
Cobos
,
I.
,
Zhang
,
S.
,
Zagozewski
,
J.
,
Japoni
,
S.
,
Vriend
,
J.
,
Parkinson
,
T.
,
Du
,
G.
,
Rubenstein
,
J. L.
et al. 
(
2017
).
GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx Homeobox transcription factors
.
J. Neurosci.
37
,
8816
-
8829
.
Lee
,
M. H.
,
Kim
,
Y. J.
,
Yoon
,
W. J.
,
Kim
,
J. I.
,
Kim
,
B. G.
,
Hwang
,
Y. S.
,
Wozney
,
J. M.
,
Chi
,
X. Z.
,
Bae
,
S. C.
,
Choi
,
K. Y.
et al. 
(
2005
).
Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter
.
J. Biol. Chem.
280
,
35579
-
35587
.
Lee
,
A. T.
,
Gee
,
S. M.
,
Vogt
,
D.
,
Rubenstein
,
J. L.
and
Sohal
,
V. S.
(
2014
).
Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition
.
Neuron
81
,
61
-
68
.
Levi
,
G.
,
de Lombares
,
C.
,
Giuliani
,
C.
,
Iannuzzi
,
V.
,
Aouci
,
R.
,
Garagnani
,
P.
,
Franceschi
,
C.
,
Grimaud-Hervé
,
D.
and
Narboux-Nême
,
N.
(
2021
).
DLX5/6 GABAergic expression affects social vocalization: implications for human evolution
.
Mol. Biol. Evol.
38
,
4748
-
4764
.
Levi
,
G.
,
Narboux-Nême
,
N.
and
Cohen-Solal
,
M.
(
2022
).
DLX Genes in the development and maintenance of the vertebrate skeleton: implications for human pathologies
.
Cells
11
,
3277
.
Lezot
,
F.
,
Thomas
,
B.
,
Greene
,
S. R.
,
Hotton
,
D.
,
Yuan
,
Z. A.
,
Castaneda
,
B.
,
Bolanos
,
A.
,
Depew
,
M.
,
Sharpe
,
P.
,
Gibson
,
C. W.
et al. 
(
2008
).
Physiological implications of DLX homeoproteins in enamel formation
.
J. Cell Physiol.
216
,
688
-
697
.
Lindtner
,
S.
,
Catta-Preta
,
R.
,
Tian
,
H.
,
Su-Feher
,
L.
,
Price
,
J. D.
,
Dickel
,
D. E.
,
Greiner
,
V.
,
Silberberg
,
S. N.
,
McKinsey
,
G. L.
,
McManus
,
M. T.
et al. 
(
2019
).
Genomic resolution of DLX-orchestrated transcriptional circuits driving development of forebrain GABAergic neurons
.
Cell Rep.
28
,
2048
-
2063
.
Liu
,
J. K.
,
Ghattas
,
I.
,
Liu
,
S.
,
Chen
,
S.
and
Rubenstein
,
J. L. R.
(
1997
).
The Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation
.
Dev. Dyn.
210
,
498
-
512
.
Lo Iacono
,
N.
,
Mantero
,
S.
,
Chiarelli
,
A.
,
Garcia
,
E.
,
Mills
,
A. A.
,
Morasso
,
M. I.
,
Costanzo
,
A.
,
Levi
,
G.
,
Guerrini
,
L.
and
Merlo
,
G. R.
(
2008
).
Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects
.
Development
135
,
1377
-
1388
.
Long
,
J. E.
,
Garel
,
S.
,
Alvarez-Dolado
,
M.
,
Yoshikawa
,
K.
,
Osumi
,
N.
,
Alvarez-Buylla
,
A.
and
Rubenstein
,
J. L.
(
2007
).
Dlx-dependent and independent regulation of olfactory bulb interneuron differentiation
.
J. Neurosci.
27
,
3230
-
3243
.
Long
,
J. E.
,
Swan
,
C.
,
Liang
,
W. S.
,
Cobos
,
I.
,
Potter
,
G. B.
and
Rubenstein
,
J. L. R.
(
2009a
).
Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways
.
J. Comp. Neurol.
512
,
556
-
572
.
Long
,
J. E.
,
Cobos
,
I.
,
Potter
,
G. B.
and
Rubenstein
,
J. L. R.
(
2009b
).
Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways
.
Cereb. Cortex
19
,
96
-
106
.
Mandal
,
S.
,
Stanco
,
A.
,
Buys
,
E. S.
,
Enikolopov
,
G.
and
Rubenstein
,
J. L.
(
2013
).
Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons
.
J. Neurosci.
33
,
16897
-
16914
.
Mao
,
R.
,
Schummers
,
J.
,
Knoblich
,
U.
,
Lacey
,
C. J.
,
Van Wart
,
A.
,
Cobos
,
I.
,
Kim
,
C.
,
Huguenard
,
J. R.
,
Rubenstein
,
J. L.
and
Sur
,
M.
(
2012
).
Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex
.
Cereb. Cortex
22
,
493
-
508
.
Marín
,
O.
,
Anderson
,
S. A.
and
Rubenstein
,
J. L. R.
(
2000
).
Origin and molecular specification of striatal interneurons
.
J. Neurosci.
20
,
6063
-
6076
.
MacKenzie
,
R. C.
,
Sanka
,
P. R.
and
Bendall
,
A. J.
(
2019
).
Dlx5 and Dlx6 can antagonize cell division at the G1/S checkpoint
.
BMC Mol. Cell Biol.
20
,
8
.
McGuinness
,
T.
,
Porteus
,
M. H.
,
Smiga
,
S.
,
Bulfone
,
A.
,
Kingsley
,
C.
,
Qiu
,
M.
,
Liu
,
J. K.
,
Long
,
J. E.
,
Xu
,
D.
and
Rubenstein
,
J. L. R.
(
1996
).
Sequence, organization and transcription of the Dlx-1 and Dlx-2 locus
.
Genomics
35
,
473
-
485
.
McKinsey
,
G. L.
,
Lindtner
,
S.
,
Trzcinski
,
B.
,
Visel
,
A.
,
Pennacchio
,
L.
,
Huylebroeck
,
D.
,
Higashi
,
Y.
and
Rubenstein
,
J. L. R.
(
2013
).
Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons
.
Neuron
77
,
83
-
98
.
Merzenich
,
M. M.
and
Rubenstein
,
J. L.
(
2003
).
Model of autism: increased ratio of excitation/inhibition in key neural systems
.
Genes Brain Behav.
2
,
255
-
267
.
Mich
,
J. K.
,
Graybuck
,
L. T.
,
Hess
,
E. E.
,
Mahoney
,
J. T.
,
Kojima
,
Y.
,
Ding
,
Y.
,
Somasundaram
,
S.
,
Miller
,
J. A.
,
Kalmbach
,
B. E.
,
Radaelli
,
C.
et al. 
(
2021
).
Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex
.
Cell Rep
34
,
108754
.
Miyama
,
K.
,
Yamada
,
G.
,
Yamamoto
,
T. S.
,
Takagi
,
C.
,
Miyado
,
K.
,
Sakai
,
M.
,
Ueno
,
N.
and
Shibuya
,
H. A.
(
1999
).
BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction
.
Dev. Biol.
208
,
123
-
133
.
Morasso
,
M. I.
,
Grinberg
,
A.
,
Robinson
,
G.
,
Sargent
,
T. D.
and
Mahon
,
K. A.
(
1999
).
Placental failure in mice lacking the homeobox gene Dlx3
.
Proc. Natl. Acad. Sci. USA
96
,
162
-
167
.
Mullen
,
R. D.
,
Bellessort
,
B.
,
Levi
,
G.
and
Behringer
,
R. R.
(
2022
).
Distal-less homeobox genes Dlx5/6 regulate Müllerian duct regression
.
Front. Endocrinol. (Lausanne)
15
,
916173
.
Nakagawa
,
Y.
,
Kaneko
,
T.
,
Ogura
,
T.
,
Suzuki
,
T.
,
Torii
,
M.
,
Kaibuchi
,
K.
,
Arai
,
K.
,
Nakamura
,
S.
and
Nakafuku
,
M.
(
1996
).
Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells
.
Development
122
,
2449
-
2464
.
Nishida
,
H.
,
Miyagawa
,
S.
,
Vieux-Rochas
,
M.
,
Morini
,
M.
,
Ogino
,
Y.
,
Suzuki
,
K.
,
Nakagata
,
N.
,
Choi
,
H. S.
,
Levi
,
G.
and
Yamada
,
G.
(
2008
).
Positive regulation of steroidogenic acute regulatory protein gene expression through the interaction between Dlx and GATA-4 for testicular steroidogenesis
.
Endocrinology
149
,
2090
-
2097
.
Panganiban
,
G.
and
Rubenstein
,
J. L. R.
(
2002
).
Developmental functions of the Distal-less (Dlx) homeobox genes
.
Development
129
,
4371
-
4386
.
Petryniak
,
M. A.
,
Potter
,
G. B.
,
Rowitch
,
D. H.
and
Rubenstein
,
J. L.
(
2007
).
Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain
.
Neuron
55
,
417
-
433
.
Pfeffer
,
U.
,
Ferro
,
P.
,
Pavia
,
V.
,
Trombino
,
S.
,
Dell'Eva
,
R.
,
Merlo
,
G.
and
Levi
,
G.
(
2001
).
The coding region of the human DLX6 gene contains a polymorphic CAG/CCG repeat
.
Int. J. Oncol.
18
,
1293
-
1297
.
Pla
,
R.
,
Stanco
,
A.
,
Howard
,
M. A.
,
Vogt
,
D.
,
Rubin
,
A.
,
Mortimer
,
N.
,
Cobos
,
I.
,
Potter
,
G. B.
,
Lindtner
,
S.
,
Price
,
J.
et al. 
(
2018
).
Dlx1/2 promote interneuron GABA synthesis, synaptogenesis, and dendritogenesis through Grin2b
.
Cereb. Cortex
28
,
3797
-
3815
.
Pleasure
,
S. J.
,
Anderson
,
S.
,
Hevner
,
R.
,
Bagri
,
A.
,
Marin
,
O.
,
Lowenstein
,
D. H.
and
Rubenstein
,
J. L. R.
(
2000
).
Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons
.
Neuron
28
,
727
-
740
.
Poitras
,
L.
,
Ghanem
,
N.
,
Hatch
,
G.
and
Ekker
,
M.
(
2007
).
The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer
.
Development
134
,
1755
-
1765
.
Poitras
,
L.
,
Yu
,
M.
,
Lesage-Pelletier
,
C.
,
Macdonald
,
R. B.
,
Gagné
,
J. P.
,
Hatch
,
G.
,
Kelly
,
I.
,
Hamilton
,
S. P.
,
Rubenstein
,
J. L.
,
Poirier
,
G. G.
et al. 
(
2010
).
An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain
.
Development
137
,
3089
-
3097
.
Pollard
,
S. L.
and
Holland
,
P. W. H.
(
2000
).
Evidence for 14 homeobox gene clusters in human genome ancestry
.
Curr. Biol.
10
,
1059
-
1062
.
Porteus
,
M. H.
,
Bulfone
,
A.
,
Ciaranello
,
R. D.
and
Rubenstein
,
J. L. R.
(
1991
).
Isolation and characterization of a Novel cDNA encoding a homeodomain that is developmentally regulated in the ventral forebrain
.
Neuron
7
,
221
-
229
.
Potter
,
G.
,
Petryniak
,
M.
,
Shevchenko
,
E.
,
McKinsey
,
G.
,
Ekker
,
M.
and
Rubenstein
,
J. L. R.
(
2009
).
Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons
.
Mol. Cell. Neurosci.
40
,
167
-
186
.
Price
,
J. A.
,
Bowden
,
D. W.
,
Wright
,
J. T.
,
Pettenati
,
M. J.
and
Hart
,
T. C.
(
1998
).
Identification of a mutation in DLX3 associated with trichodento-osseous (TDO) syndrome
.
Hum. Mol. Genet
7
,
563
-
569
.
Price
,
M.
,
Lemaistre
,
M.
,
Pischetola
,
M.
,
Di Lauro
,
R.
and
Duboule
,
D.
(
1991
).
A mouse gene related to Distal-less shows a restricted expression in the developing forebrain
.
Nature
351
,
748
-
751
.
Price
,
J. D.
,
Lindtner
,
S.
,
Ypsilanti
,
A.
,
Binyameen
,
F.
,
Johnson
,
J. R.
,
Newton
,
B. W.
,
Krogan
,
N. J.
and
Rubenstein
,
J. L. R.
(
2022
).
DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression
.
Development
149
,
dev199508
.
Puelles
,
L.
,
Diaz
,
C.
,
Stühmer
,
T.
,
Ferran
,
J. L.
,
Martínez-de la Torre
,
M.
and
Rubenstein
,
J. L. R.
(
2021
).
LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus
.
J. Comp. Neurol.
529
,
367
-
420
.
Puelles
,
L.
,
Stuehmer
,
T.
,
Rubenstein
,
J. L. R.
and
Diaz
,
C.
(
2023
).
Critical test of the assumption that the hypothalamic entopeduncular nucleus of rodents is homologous with the primate internal pallidum
.
J. Comp. Neurol.
531
,
1715
-
1750
.
Qiu
,
M.
,
Bulfone
,
A.
,
Martinez
,
S.
,
Meneses
,
J. J.
,
Shimamura
,
K.
,
Pedersen
,
R. A.
and
Rubenstein
,
J. L. R.
(
1995
).
Role of Dlx-2 in Head Development and Evolution: Null Mutation of Dlx-2 Results in Abnormal Morphogenesis of Proximal First and Second Branchial Arch Derivatives and Abnormal Differentiation in the Forebrain
.
Genes Dev.
9
,
2523
-
2538
.
Qiu
,
M. S.
,
Bulfone
,
A.
,
Ghattas
,
I.
,
Meneses
,
J. J.
,
Christensen
,
L.
,
Sharpe
,
P. T.
,
Presley
,
R.
,
Pedersen
,
R. A.
and
Rubenstein
,
J. L. R.
(
1997
).
Role of Dlx-1 and Dlx-2 in proximodistal patterning of the branchial arches: mutations alter morphogenesis of proximal skeletal elements derived from the first and second arches
.
Dev. Biol.
185
,
165
-
184
.
Robledo
,
R. F.
,
Rajan
,
L.
,
Li
,
X.
and
Lufkin
,
T.
(
2002
).
The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development
.
Genes Dev.
16
,
1089
-
1101
.
Robinson
,
G. W.
,
Wray
,
S.
and
Mahon
,
K. A.
(
1991
).
Spatially restricted expression of a member of a new family of murine Distal-less homeobox genes in the developing forebrain
.
New Biol.
12
,
1183
-
1194
.
Rubenstein
,
J. L. R.
and
Puelles
,
L
. (
2004
).
Chapter 8
. In
Development of The Nervous System. Molecular Basis Of Inborn Errors Of Development
(ed.
C. J.
Epstein
,
R. P.
Erikson
and
A.
Wynshaw-Boris
), pp.
75
-
88
.
Oxford University Press
.
Rubenstein
,
J. L.
and
Rakic
,
P.
(ed.). (
2020
).
Comprehensive Developmental Neuroscience
. 2nd edn.
Elsevier, Academic Press
.
Rubenstein
,
J. L. R.
,
Brice
,
A. E. J.
,
Ciaranello
,
R. D.
,
Denney
,
D.
,
Porteus
,
M. H.
and
Usdin
,
T. B.
(
1990
).
Subtractive hybridization system using single-stranded phagemids with directional inserts
.
Nucleic Acids Res.
18
,
4833
-
4842
.
Rubenstein
,
J. L. R.
,
Martinez
,
S.
,
Shimamura
,
K.
and
Puelles
,
L.
(
1994
).
The prosomeric model: a proposal for the organization of the embryonic forebrain
.
Science
266
,
578
-
560
.
Seybold
,
B. A.
,
Stanco
,
A.
,
Cho
,
K.
,
Potter
,
G.
,
Kim
,
C.
,
Sohal
,
V.
,
Rubenstein
,
J. L. R.
and
Schreiner
,
C. E.
(
2012
).
Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex
.
Proc. Natl. Acad. Sci. USA
109
,
13829
-
13834
.
Sohal
,
V. S.
and
Rubenstein
,
J. L. R.
(
2019
).
Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders
.
Mol. Psychiatry
24
,
1248
-
1257
.
Stenman
,
J.
,
Toresson
,
H.
and
Campbell
,
K.
(
2003
).
Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis
.
J. Neurosci.
23
,
167
-
174
.
Stühmer
,
T.
,
Puelles
,
L.
,
Ekker
,
M.
and
Rubenstein
,
J. L. R.
(
2002a
).
Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons
.
Cereb. Cortex
12
,
75
-
85
.
Stühmer
,
T.
,
Anderson
,
S. A.
,
Ekker
,
M.
and
Rubenstein
,
J. L. R.
(
2002b
).
Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression
.
Development
129
,
245
-
252
.
Su
,
Z.
,
Wang
,
Z.
,
Lindtner
,
S.
,
Yang
,
L.
,
Shang
,
Z.
,
Tian
,
Y.
,
Guo
,
R.
,
You
,
Y.
,
Zhou
,
W.
,
Rubenstein
,
J. L.
et al. 
(
2022
).
Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum
.
Development
149
,
dev200035
.
Su-Feher
,
L.
,
Rubin
,
A. N.
,
Silberberg
,
S. N.
,
Catta-Preta
,
R.
,
Lim
,
K. J.
,
Zdilar
,
I.
,
McGinnis
,
C. S.
,
McKinsey
,
G. L.
,
Rubino
,
T. E.
,
Hawrylycz
,
M.
et al. 
(
2022
).
Single Cell Enhancer Activity Maps Neuronal Lineages in Embryonic Mouse Basal Ganglia
.
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2108760119
.
Sunwoo
,
J. B.
,
Kim
,
S.
,
Yang
,
L.
,
Naik
,
T.
,
Higuchi
,
D. A.
,
Rubenstein
,
J. L.
and
Yokoyama
,
W. M.
(
2008
).
Distal-less homeobox transcription factors regulate development and maturation of natural killer cells
.
Proc. Natl. Acad. Sci. USA
105
,
10877
-
10882
.
Thomas
,
B. L.
,
Tucker
,
A. S.
,
Qiu
,
M.
,
Ferguson
,
C. A.
,
Hardcastle
,
Z.
,
Rubenstein
,
J. L. R.
and
Sharpe
,
P. T.
(
1997
).
Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition
.
Development
124
,
4811
-
4818
.
Thomas
,
B. L.
,
Liu
,
J. K.
,
Rubenstein
,
J. L. R.
and
Sharpe
,
P. T.
(
2000
).
Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch
.
Development
127
,
217
-
224
.
Vachon
,
G.
,
Cohen
,
B.
,
Pfeifle
,
C.
,
McGuffin
,
M. E.
,
Botas
,
J.
and
Cohen
,
S. M.
(
1992
).
Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less
.
Cell
71
,
437
-
450
.
Visel
,
A.
,
Taher
,
L.
,
Girgis
,
H.
,
May
,
D.
,
Golonzhka
,
O.
,
Hoch
,
R.
,
McKinsey
,
G. L.
,
Pattabiraman
,
K.
,
Silberberg
,
S. N.
,
Blow
,
M. J.
et al. 
(
2013
).
A high-resolution enhancer atlas of the developing telencephalon
.
Cell.
152
,
4895
-
4908
.
Wang
,
Y.
,
Dye
,
C.
,
Sohal
,
V.
,
Long
,
J.
,
Estrada
,
R.
,
Roztocil
,
T.
,
Lufkin
,
T.
,
Deisseroth
,
K.
,
Baraban
,
S.
and
Rubenstein
,
J. L. R.
(
2010
).
Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons
.
J. Neurosci.
30
,
5334
-
5345
.
Wang
,
B.
,
Lufkin
,
T.
and
Rubenstein
,
J. L. R.
(
2011a
).
Dlx6 Regulates molecular properties of the striatum and central nucleus of the amygdala
.
JCN
519
,
2320
-
2334
.
Wang
,
Y.
,
Li
,
G.
,
Stanco
,
A.
,
Long
,
J. E.
,
Crawford
,
D.
,
Potter
,
G. B.
,
Pleasure
,
S.
,
Behrens
,
T.
and
Rubenstein
,
J. L. R.
(
2011b
).
CXCR4 and CXCR7 have distinct functions in regulating interneuron migration
.
Neuron
69
,
61
-
76
.
Wang
,
B.
,
Long
,
J. E.
,
Flandin
,
P.
,
Pla
,
R.
,
Waclaw
,
R. R.
,
Campbell
,
K.
and
Rubenstein
,
J. L.
(
2013
).
Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants
.
J. Comp. Neurol.
21
,
1561
-
1584
.
Wright
,
C. M.
,
Garifallou
,
J. P.
,
Schneider
,
S.
,
Mentch
,
H. L.
,
Kothakapa
,
D. R.
,
Maguire
,
B. A.
and
Heuckeroth
,
R. O.
(
2020
).
Dlx1/2 mice have abnormal enteric nervous system function
.
JCI Insight
5
,
e131494
.
Xu
,
S. C.
,
Harris
,
M. A.
,
Rubenstein
,
J. L.
,
Mundy
,
G. R.
and
Harris
,
S. E.
(
2001
).
Bone morphogenetic protein-2 (BMP-2) signaling to the Col2alpha1 gene in chondroblasts requires the homeobox gene Dlx-2
.
DNA Cell Biol.
20
,
359
-
365
.
Xu
,
Z.
,
Liang
,
Q.
,
Song
,
X.
,
Zhang
,
Z.
,
Lindtner
,
S.
,
Li
,
Z.
,
Wen
,
Y.
,
Liu
,
G.
,
Guo
,
T.
,
Qi
,
D.
et al. 
(
2018
).
SP8 and SP9 coordinately promote D2-type medium spiny neuron production by activating Six3 expression
.
Development
145
,
dev165456
.
Yang
,
L.
,
Zhang
,
H.
,
Hu
,
G.
,
Wang
,
H.
,
Abate-Shen
,
C.
and
Shen
,
M. M.
(
1998
).
An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate
.
J. Neurosci.
18
,
8322
-
8330
.
Yu
,
G.
,
Zerucha
,
T.
,
Ekker
,
M.
and
Rubenstein
,
J. L. R.
(
2001
).
A PDZ-domain protein that is expressed in the embryonic forebrain co-activates transcription with DLX homeodomain proteins
.
Dev. Brain Res.
130
,
217
-
230
.
Yun
,
K.
,
Fischman
,
S.
,
Johnson
,
J.
,
Hrabe de Angelis
,
M.
,
Weinmaster
,
G.
and
Rubenstein
,
J. L. R.
(
2002
).
Modulation of the notch signaling by Mash1and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon
.
Development
129
,
5029
-
5040
.
Zhang
,
Q.
,
Zagozewski
,
J.
,
Cheng
,
S.
,
Dixit
,
R.
,
Zhang
,
S.
,
de Melo
,
J.
,
Mu
,
X.
,
Klein
,
W. H.
,
Brown
,
N. L.
,
Wigle
,
J. T.
et al. 
(
2017
).
Regulation of Brn3b by DLX1 and DLX2 is required for retinal ganglion cell differentiation in the vertebrate retina
.
Development
144
,
1698
-
1711
.
Zerucha
,
T. S.
and
Ekker
,
M.
(
2000
).
Distal-less-related homeobox genes of vertebrates: evolution, function, and regulation
.
Biochem. Cell Biol.
78
,
593
-
601
.
Zerucha
,
T. S.
,
Stuhmer
,
T.
,
Park
,
B. K.
,
Long
,
Q.
,
Yu
,
G.
,
Hatch
,
G.
,
Gambarotta
,
A.
,
Schultz
,
J.
,
Rubenstein
,
J. L. R.
and
Ekker
,
M.
(
2000
).
A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain
.
J. Neurosci.
20
,
709
-
721
.
Zhou
,
Q. P.
,
Le
,
T. N.
,
Qiu
,
X.
,
Spencer
,
V.
,
de Melo
,
J.
,
Du
,
G.
,
Plews
,
M.
,
Fonseca
,
M.
,
Sun
,
J. M.
,
Davie
,
J. R.
et al. 
(
2004
).
Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation
.
Nucleic Acids Res.
32
,
884
-
892
.

Competing interests

J.L.R. is a Founder and a shareholder of Neurona Therapeutics Inc.