RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.

The RUNX family of transcription factors orchestrate various developmental and cellular processes, such as cell proliferation, differentiation and cell lineage specification. The RUNX genes were named after the discovery of the developmental regulatory gene runt, which was found to be essential for early embryonic segmentation after being identified in a mutagenesis screen for the development of Drosophila melanogaster (Gergen and Butler, 1988; Nüsslein-Volhard and Wieschaus, 1980). RUNX genes have been described in the majority of sequenced metazoan genomes, with single copies of a RUNX gene present in most bilaterians, and at least three genes in insects and vertebrates (Rennert et al., 2003). The mammalian RUNX transcription factors consist of RUNX1, RUNX2 and RUNX3.

In this Primer, we introduce the hallmarks of the RUNX family of transcription factors and discuss their diverse means of regulation and mechanisms of action. We then review the main developmental roles of the RUNX factors, focusing principally on mammals, to highlight their importance from embryogenesis to adult homeostasis in a wide range of tissues.

Conservation of RUNX loci and transcriptional regulation

The genomic architecture of the three mammalian RUNX genes is very similar (Fig. 1A), and highly conserved across metazoans. In vertebrates, all RUNX genes contain two alternative promoters: a distal P1 promoter and a proximal P2 promoter, which is thought to represent the primordial promoter (Levanon and Groner, 2004; Rennert et al., 2003). The main protein isoforms encoded by these transcripts differ in their N-terminal amino acid sequences; distal isoforms are usually longer and always begin with the MAS(D/N)S amino acid sequence, whereas proximal isoforms begin with the MRIPV motif (Bangsow et al., 2001; Miyoshi et al., 1995; Xiao et al., 1998). The 500 million years of conservation of this dual promoter structure for the three RUNX genes in vertebrates suggests specific – but currently unclear – functions for each promoter or for their respective transcripts (Levanon and Groner, 2004; Rennert et al., 2003). Indeed, differential activity of the two promoters has been reported across a wide range of developmental stages and tissues, suggesting divergent context-specific requirements (Bangsow et al., 2001; Bee et al., 2010; Chung et al., 2007; Draper et al., 2016; Harada et al., 1999; Liu et al., 2011; Rini and Calabi, 2001; Sroczynska et al., 2009).

Fig. 1.

RUNX1, RUNX2 and RUNX3 genes and proteins. (A) Conserved genomic structure of human RUNX1 (Entrez Gene ID: 861), RUNX2 (Entrez Gene ID: 860) and RUNX3 (Entrez Gene ID: 864). The initiator ATG codons of P1- and P2-derived transcripts are indicated by downward pointing arrows. Exons coding for Runt and transactivation domains (TAD) are shown in dark and light blue, respectively, and UTRs are in white. Dominant splicing is indicated by a continuous line, and some alternative splicing is shown by a dashed line. (B) Schematic of human RUNX1 (NP_001001890), RUNX2 (NP_001265407) and RUNX3 (NP_004341) protein structures and domains, including the conserved Runt homology domain (RHD), nuclear localization signal (NLS), transactivation (AD) and inhibitory (ID) domains, C-terminal Groucho/TLE binding site (VWRPY), and the RUNX2-specific glutamine/alanine-rich (QA) sequence.

Fig. 1.

RUNX1, RUNX2 and RUNX3 genes and proteins. (A) Conserved genomic structure of human RUNX1 (Entrez Gene ID: 861), RUNX2 (Entrez Gene ID: 860) and RUNX3 (Entrez Gene ID: 864). The initiator ATG codons of P1- and P2-derived transcripts are indicated by downward pointing arrows. Exons coding for Runt and transactivation domains (TAD) are shown in dark and light blue, respectively, and UTRs are in white. Dominant splicing is indicated by a continuous line, and some alternative splicing is shown by a dashed line. (B) Schematic of human RUNX1 (NP_001001890), RUNX2 (NP_001265407) and RUNX3 (NP_004341) protein structures and domains, including the conserved Runt homology domain (RHD), nuclear localization signal (NLS), transactivation (AD) and inhibitory (ID) domains, C-terminal Groucho/TLE binding site (VWRPY), and the RUNX2-specific glutamine/alanine-rich (QA) sequence.

Alternative splicing events add further diversity to RUNX transcripts originating from the P1 and P2 promoters (see Box 1). Interestingly, all RUNX genes express a panel of isoforms with increased or reduced transactivation activities (Bae et al., 1994; Bangsow et al., 2001; Geoffroy et al., 1998; Jin et al., 2004; Puig-Kröger et al., 2010; Telfer and Rothenberg, 2001; Terry et al., 2004). Also, sequence variations occurring in the 5′ and 3′ untranslated regions (UTRs) of the multiple RUNX transcripts affect the stability and translation efficiency of the different RUNX mRNAs. P1-derived transcripts, generally bearing a shorter 5′ UTR, have been shown to direct cap-mediated translation more efficiently than the P2-derived 5′ UTR (Pozner et al., 2000). In addition, microRNAs can regulate RUNX transcripts by targeting isoform-specific 3′ UTRs (Ben-Ami et al., 2009; Zhang et al., 2011). Currently, the specific physiological role of all these different isoforms remains largely unknown.

Box 1. Spotlight on Runx1 isoforms in adult hematopoiesis

RUNX isoforms display well-defined structural differences and distinct developmental expression patterns. Now, isoform-specific functionalities are beginning to emerge. In adult hematopoiesis, the P1-derived RUNX1c is dominant, whereas P2-derived RUNX1b is confined to progenitor subsets of the granulocyte/macrophage, lymphoid lineages and megakaryocytes (Bee et al., 2009; Draper et al., 2016; Telfer and Rothenberg, 2001). Downregulation of Runx1b is a prerequisite for terminal differentiation of these lineages, except megakaryocytes. In myeloid cells, Runx1b expression correlates with increased proliferation and colony-forming unit-culture activity in the bipotential pre-megakaryocyte/erythroid (PreMegE) progenitor (Draper et al., 2016). In P1-null mice, inactivation of Runx1c results in lineage-specific defects, reminiscent of total Runx1 deficiency (Bee et al., 2010; Draper et al., 2016, 2017). In these mice, PreMegE progenitors produce more erythroid, and fewer megakaryocyte, progenitors (Draper et al., 2017). Unlike in complete Runx1 knockout models (Growney et al., 2005; Ichikawa et al., 2004), Runx1c-null megakaryocytes differentiate and produce proplatelets, suggesting that RUNX1c specifies megakaryocytes, whereas RUNX1b drives the maturation of committed megakaryocytes. In a human B lymphoblastoid cell line infected with Epstein–Barr virus, RUNX1c – but not RUNX1b – inhibits growth (Brady et al., 2013). Finally, a shorter isoform designated RUNX1a, transcribed from the P2 promoter and lacking the transactivation domain, has been identified in humans (Komeno et al., 2014). RUNX1a is proposed to act as a dominant negative (Levanon et al., 2001), that enhances hematopoietic commitment (Ran et al., 2013) and increases HSPC renewal (Tsuzuki and Seto, 2012; Tsuzuki et al., 2007).

Structural homologies between the RUNX proteins

The defining component of the RUNX proteins is the presence of the highly conserved Runt homology domain (RHD), a 128-amino-acid sequence located near the N terminus (Fig. 1B) (Rennert et al., 2003). The RHD is essential for (1) binding to the DNA at the consensus RUNX motif ‘PyGPyGGTPy’ (Kamachi et al., 1990; Wang and Speck, 1992), (2) protein-protein interactions (Lilly et al., 2016; Nagata et al., 1999) and (3) the nuclear localization of the RUNX factors (Michaud et al., 2002; Telfer et al., 2004). The C terminus is less conserved and contains an activation domain, an inhibitory domain and a five amino acid C-terminal motif (VWRPY in most cases), known as the recruitment signal for the Groucho/TLE (transducin-like enhancer of split) family of co-repressors (Levanon et al., 1998; Seo et al., 2012b; Yarmus et al., 2006). Within the transactivation domain, RUNX proteins also bear a conserved nuclear matrix-targeting signal sequence, which plays a role in the regulation of RUNX activity and nuclear localization (Zaidi et al., 2001; Zeng et al., 1998).

Mechanism of action

RUNX transcription factors are part of a heterodimeric complex formed by dimerization between the α subunit, RUNX, and its main partner, the core binding factor subunit β (CBFβ) (Fig. 2A) (Kamachi et al., 1990; Ogawa et al., 1993; Wang et al., 1993). CBFβ acts as a non-DNA-binding regulatory element, which allosterically increases the DNA-binding affinity and stability of the complex by interacting with RUNX through the RHD (Bravo et al., 2001; Huang et al., 2001; Tang et al., 2000; Yan et al., 2004). Of note, CBFβ-independent functions of RUNX have also been suggested in the literature (Bresciani et al., 2014), including a non-transcriptional role for RUNX1 and RUNX3 in the Fanconi anemia DNA-repair pathway (Tay et al., 2018; Wang et al., 2014b). Usually regarded as weak transcription factors by themselves, RUNX proteins might have the potential to act as ‘pioneer’ transcription factors, which are able to engage condensed chromatin to facilitate its opening, and promote the recruitment of other transcriptional regulators (Zaret and Carroll, 2011). Indeed, this seems to be the case for RUNX1 in hematopoiesis (Hoogenkamp et al., 2009; Lichtinger et al., 2012) and RUNX3 in cell cycle progression (Lee et al., 2019); however, the extent to which these observations could apply to other settings and other RUNX proteins remains to be determined. Importantly, RUNX factors can function as both transcriptional activators and repressors. For instance, RUNX1 is able to drive PU.1 (Spi1) expression in myeloid and B cells, whereas it represses the same gene in T cells and megakaryocytes (Huang et al., 2008). This gene- and context-specific ambivalence stems from the myriad of RUNX/CBFβ interactors.

Fig. 2.

RUNX activity and stability. (A) RUNX factors can act as transcriptional activators or repressors depending on binding partners and post-translational modifications. CBFβ dimerizes with the Runt binding domain to enhance DNA-binding to the RUNX consensus motif. The Runt domain is indicated in blue. (B) Summary of the main post-translational modifications affecting RUNX protein activity. Ac, acetylation; Me, methylation; P, phosphorylation; S, serine; Su, SUMOylation; T, threonine; Ub, ubiquitylation; Y, tyrosine.

Fig. 2.

RUNX activity and stability. (A) RUNX factors can act as transcriptional activators or repressors depending on binding partners and post-translational modifications. CBFβ dimerizes with the Runt binding domain to enhance DNA-binding to the RUNX consensus motif. The Runt domain is indicated in blue. (B) Summary of the main post-translational modifications affecting RUNX protein activity. Ac, acetylation; Me, methylation; P, phosphorylation; S, serine; Su, SUMOylation; T, threonine; Ub, ubiquitylation; Y, tyrosine.

Post-translational modifications

RUNX factors are actively regulated at the post-translational level to enable fine-tuning of their transcriptional potency, stability and localization (Fig. 2B) through several signaling pathways. Here, we briefly describe the main post-translational modifications that regulate RUNX protein activity; more in-depth reviews describing interactors and target genes have been published previously (Chuang et al., 2013; Goyama et al., 2015; Ito et al., 2015). RUNX transcriptional activity is generally associated with its acetylation or interaction with chromatin modifiers such as p300 (EP300)/CBP (CREBBP) or MOZ (KAT6A) (Jin et al., 2004; Kitabayashi et al., 2001; Pelletier et al., 2002; Wang et al., 2011a). Furthermore, serine and threonine phosphorylation by diverse signaling cascades can enhance RUNX activity in a variety of cellular contexts (Aikawa et al., 2006; Guo and Friedman, 2011; Imai et al., 2004; Kim et al., 2008; Wee et al., 2008; Zhang et al., 2008a). Methylations of RUNX factors play ambivalent roles, as they can increase DNA binding (Zhao et al., 2008) or favor transcriptional repression depending on the cellular context (Herglotz et al., 2013; Vu et al., 2013). Repressive activity of the RUNX proteins are further controlled by tyrosine phosphorylation (Goh et al., 2010; Huang et al., 2012), association with histone deacetylases (HDACs) (Jeon et al., 2006; Lutterbach et al., 2000), and interaction with transcriptional regulators, such as SIN3A and Groucho/TLE family members (Imai et al., 1998, 2004; Levanon et al., 1998; Zhao et al., 2008). As both acetylation of non-histone proteins and ubiquitylation occurs at lysine residues, HDACs can reduce the transcriptional activity of RUNX by promoting their ubiquitylation (Jin et al., 2004). Indeed, the stability of the RUNX factors is tightly regulated by ubiquitin-mediated degradation and depends on a combination of other post-translational modifications. Additionally, the CDC20 subunit of the anaphase-promoting complex (APC) can regulate the level of RUNX proteins during cell cycle progression (Biggs et al., 2006). Finally, the stability of RUNX has also been reported to be decreased by SUMOylations (Kim et al., 2014). Although these post-translational modifications have mostly been studied in isolation, it is evident that RUNX proteins are regulated by complex crosstalk between these modifications, which represent a major level of regulation of RUNX transcriptional activity. Importantly, deregulations of these subtle regulatory mechanisms have been shown to play important roles in the context of disease (Ito et al., 2015).

Auto-regulation, cross-regulation and functional redundancy

Analyses of the promoters of each of the RUNX members have revealed the presence of consensus RUNX binding sites, raising the possibility of auto-regulatory loops (Ghozi et al., 1996), which was originally confirmed for Runx2 in the context of bone formation (Drissi et al., 2000; Ducy et al., 1999). Similarly, Runx1 has since been reported to regulate its own expression both in vitro (Pimanda et al., 2007) and in vivo (Martinez et al., 2016). Cases of cross-talk between RUNX factors have also been described, whereby RUNX3 regulates RUNX1 expression level by repressing its transcription in human B lymphoid cell lines (Brady et al., 2009; Spender et al., 2005).

The extent to which RUNX factors play redundant roles remains largely unknown. A few studies have demonstrated that the RUNX proteins can substitute each other in specific instances. For example, it has been shown using an in vitro co-culture system of the murine embryonic para-aortic splanchnopleural region that ectopic expression of Runx2 or Runx3 is able to rescue the hematopoietic defects caused by Runx1 deficiency (Goyama et al., 2004).

Similarly, replacement of RUNX1 C terminus by the equivalent portions of RUNX2 or RUNX3 rescues the Runx1-null embryonic lethal phenotype (Fukushima-Nakase, 2005). Likewise, premature senescence was induced in murine embryonic fibroblasts by individually overexpressing one of the three RUNX genes (Kilbey et al., 2007). Studies in Runx1/Runx3 double knockout (DKO) mice have exposed functional redundancy between these genes in the Fanconi anemia DNA-repair pathway, independent of their transcriptional role (Tay et al., 2018; Wang et al., 2014b). Finally, Morita and colleagues have shown compensatory mechanisms between the three RUNX factors in the context of leukemia (Morita et al., 2017). The studies described above, as well as the strong structural homologies and potential auto- and cross-regulations, suggest that RUNX proteins could compensate for each other. New technologies such as single cell RNA transcriptomics are likely to reveal further co-expression in defined cellular compartments, and the specific spatiotemporal expression patterns of the RUNX genes is thought to explain, at least partially, their non-redundant functions and requirements in several developmental processes (Levanon and Groner, 2004; Levanon et al., 2001).

However, even in the context of co-expression, such as in teeth development, comparison of the phenotypes observed in Runx2/Runx3 DKO mice with those of single Runx2 knockouts showed no obvious compensations between the two factors (Wang et al., 2005a). In other contexts, partial, but not complete, redundancy has been reported. Only a certain degree of redundancy has been observed between Runx2 and Runx3 during chondrocyte development using single and double knockout mouse models (Yoshida, 2004), and partial redundancy has also been reported during lacrimal gland development (Voronov et al., 2013).

Taken together, although these studies reveal possible compensation between the RUNX genes in defined contexts, they also highlight their crucial and non-redundant functions that are partly, but not exclusively, associated with their intricate spatiotemporal regulation.

The functions of the RUNX family members have been uncovered using knockout mice. Deletion of each of the three RUNX proteins has severe consequences on survival; Runx1 knockout is embryonically lethal, Runx2 mice display neonatal lethality, and Runx3 knockouts have mixed survival rates depending on the model and strain used. These models initially revealed that RUNX1 is essential for definitive hematopoiesis (Okuda et al., 1996; Wang et al., 1996), RUNX2 is crucial for skeletal development (Ducy et al., 1999; Komori et al., 1997; Otto et al., 1997), and RUNX3 plays an important role in neurogenesis (Inoue et al., 2002; Levanon et al., 2002). Later, studies using stage- and tissue-specific conditional knockouts started to uncover a myriad of additional roles for RUNX proteins in other tissues, which were previously concealed by the severity of the developmental defects in the complete knockout models (Table 1). In the next section, we give an overview of the most thoroughly examined roles and requirements of the three mammalian RUNX proteins. Although these conclusions have mainly been drawn from mouse experiments, we do indicate when other models, such as human, have been used.

Table 1.

Summary of RUNX mouse models, and their associated phenotypes in development

Summary of RUNX mouse models, and their associated phenotypes in development
Summary of RUNX mouse models, and their associated phenotypes in development

RUNX in the hematopoietic system

Of the three RUNX proteins, RUNX1 and RUNX3 are the major players in the hematopoietic system. RUNX1 is generally considered as a master regulator of hematopoiesis owing to its crucial role in the ontogeny of the whole hematopoietic system whereas RUNX3 has important functions in the lymphocyte and myeloid lineages. We summarize below the main roles of RUNX in the hematopoietic system; for in-depth information, readers are directed to excellent recent reviews about the role of RUNX factors in hematopoiesis (de Bruijn and Dzierzak, 2017; Ebihara et al., 2017; Gao et al., 2018; Thambyrajah et al., 2016b; Tober et al., 2016; Voon et al., 2015).

Embryonic hematopoiesis

The vertebrate hematopoietic system is established through three main successive waves of blood cell generation. The first two waves take place in the extra-embryonic yolk sac and produce sequentially primitive erythrocytes, then erythro-myeloid and lymphoid progenitors (Costa et al., 2012; Frame et al., 2016; Lux et al., 2008; McGrath et al., 2015; Palis et al., 1999; Yoshimoto et al., 2011, 2012). The third wave takes place in the intra-embryonic aorta-gonad-mesonephros (AGM) region, and generates the hematopoietic stem cells (HSCs) that will sustain the hematopoietic system during adulthood (Medvinsky and Dzierzak, 1996) (Fig. 3A). Both stem and progenitor hematopoietic cells (HSPCs) arise from hemogenic endothelial cells through an endothelial-to-hematopoietic transition (EHT) (Fig. 3B) (Bertrand et al., 2010; Boisset et al., 2010; Eilken et al., 2009; Jaffredo et al., 1998; Kissa and Herbomel, 2010; Lam et al., 2010; Lancrin et al., 2009; Zovein et al., 2008). HSPCs then move to the fetal liver, where they further expand and mature before seeding the bone marrow that serves as the main hematopoietic organ during adulthood (Mikkola and Orkin, 2006).

Fig. 3.

RUNX1 and embryonic hematopoiesis. (A) Timeline of embryonic blood development. Runx1 is expressed at all the different sites of hematopoietic development during the different hematopoietic waves. EMPs, erythro-myeloid progenitors; HSCs, hematopoietic stem cells; LMPs, lymphoid-myeloid progenitors. (B) RUNX1 is crucial for the endothelial-to-hematopoietic transition. Runx1 is expressed in endothelial cells of the ventral wall of the mouse dorsal aorta and in mesenchymal cells situated below (pink cells). A rare subset of endothelial cells, the hemogenic endothelial cells (red cells), are committed to forming blood cells (1). RUNX1 is required for these cells to undergo morphological changes and bud from the endothelial lining into the lumen of the dorsal aorta (2). These precursors further proliferate and differentiate into mature blood cells in intra-aortic clusters (3).

Fig. 3.

RUNX1 and embryonic hematopoiesis. (A) Timeline of embryonic blood development. Runx1 is expressed at all the different sites of hematopoietic development during the different hematopoietic waves. EMPs, erythro-myeloid progenitors; HSCs, hematopoietic stem cells; LMPs, lymphoid-myeloid progenitors. (B) RUNX1 is crucial for the endothelial-to-hematopoietic transition. Runx1 is expressed in endothelial cells of the ventral wall of the mouse dorsal aorta and in mesenchymal cells situated below (pink cells). A rare subset of endothelial cells, the hemogenic endothelial cells (red cells), are committed to forming blood cells (1). RUNX1 is required for these cells to undergo morphological changes and bud from the endothelial lining into the lumen of the dorsal aorta (2). These precursors further proliferate and differentiate into mature blood cells in intra-aortic clusters (3).

Runx1 is expressed in all these sites of de novo blood cell emergence, as well as in all the hematopoietic cells, with the exception of mature erythrocytes (Lacaud et al., 2002; Lorsbach et al., 2004; North et al., 1999, 2002; Sroczynska et al., 2009; Stefanska et al., 2017; Swiers et al., 2013; Zeigler et al., 2006). Disruption of Runx1 results in the complete absence of all hematopoietic cells other than primitive erythroid cells (Lacaud et al., 2002; Okuda et al., 1996; Wang et al., 1996). RUNX1 is essential for both initiation and completion of EHT by epigenetic silencing of the endothelial program (Lancrin et al., 2012; Liakhovitskaia et al., 2014; Lie-A-Ling et al., 2014; Thambyrajah et al., 2016a; Tober et al., 2013), and redistribution of hematopoietic transcription factor binding (Lichtinger et al., 2012), to form a stable epigenetic state, at which point RUNX1 is dispensable (Chen et al., 2009; Lancrin et al., 2009; North et al., 1999) (Fig. 3B). Precise modulation of RUNX1 levels and activity is essential for the efficiency and correct timing of hematopoietic progenitor emergence (Cai et al., 2000; Eliades et al., 2016; Lacaud et al., 2004; Lie-A-Ling et al., 2018). This is in part sustained by the sequential activation of Runx1 promoters: proximal P2 transcripts are detected during EHT, whereas distal P1 transcripts are only found once hematopoietic commitment is completed (Bee et al., 2009; Challen and Goodell, 2010; Fujita et al., 2001; Sroczynska et al., 2009; Zambidis et al., 2005). Accordingly, the activity of the P2 proximal promoter is crucial for blood cell emergence whereas abrogation of P1 distal transcripts results in more subtle defects (Lam et al., 2009; Mukai et al., 2012; Pozner et al., 2007; Sroczynska et al., 2009).

Adult hematopoiesis

Runx1 is broadly expressed in most adult blood cells (Lorsbach et al., 2004; North et al., 2004) (Fig. 4A). However, despite this broad expression, Runx1 appears to be partially dispensable in adult hematopoiesis, as indicated by the absence of lethality when deleted either from the onset of HSC development at embryonic day (E) 11.5 using the Vav1-Cre mouse line (Chen et al., 2009) or in established adult hematopoiesis with the pan hematopoietic inducible Mx1-Cre system (Cai et al., 2011; Growney et al., 2005; Ichikawa et al., 2004; Jacob et al., 2010; Putz et al., 2006). Runx1 deletion in adult mice was shown to result either in expansion (Growney et al., 2005; Ichikawa et al., 2004) or exhaustion (Jacob et al., 2010) of phenotypic HSCs. A more recent study suggests that deregulation of expression of HSC cell surface markers in the absence of RUNX1 might explain some of these conflicting results, and that loss of Runx1 does not substantially alter the frequency of functional long-term repopulation of HSCs based on bone marrow chimerism (Cai et al., 2011) (Fig. 4B). Runx1 deletion causes significant expansion of the entire bone marrow hematopoietic stem and progenitor cell compartment (Cai et al., 2011; Growney et al., 2005; Ichikawa et al., 2004; Jacob et al., 2010) and decreased HSC apoptosis and ribosome biogenesis, which have been proposed to contribute to preleukemic states (Cai et al., 2015) (Box 2, Fig. 4B).

Fig. 4.

Runx1 expression and impact of Runx1 knockout on adult hematopoiesis in mice. (A) Expression of Runx1 (red background) in the different hematopoietic populations of the adult hematopoietic system. (B) Impact of hematopoietic Runx1 knockout on the frequencies of these populations. Enhanced processes are indicated by bold arrows, impaired processes are indicated by bars. CFUe, erythroid colony-forming unit; CLP, common lymphoid progenitor; GMP, granulocyte/monocyte progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; MkP, megakaryocyte progenitor; MPP, multipotent progenitor; Pre-CFUe, pre-erythroid colony-forming unit; Pre-GM, pre-granulocyte/monocyte progenitor; Pre-MegE, pre-megakaryocyte/erythroid progenitor.

Fig. 4.

Runx1 expression and impact of Runx1 knockout on adult hematopoiesis in mice. (A) Expression of Runx1 (red background) in the different hematopoietic populations of the adult hematopoietic system. (B) Impact of hematopoietic Runx1 knockout on the frequencies of these populations. Enhanced processes are indicated by bold arrows, impaired processes are indicated by bars. CFUe, erythroid colony-forming unit; CLP, common lymphoid progenitor; GMP, granulocyte/monocyte progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; MkP, megakaryocyte progenitor; MPP, multipotent progenitor; Pre-CFUe, pre-erythroid colony-forming unit; Pre-GM, pre-granulocyte/monocyte progenitor; Pre-MegE, pre-megakaryocyte/erythroid progenitor.

Box 2. RUNX factors in cancer

RUNX genes are associated with hallmarks of cancer development, including proliferation and epithelial-to-mesenchymal transition, and have oncogenic or tumor-suppressive functions. Mutations in all three RUNX genes, and CBFβ, are frequently identified in cancers and their roles are being actively investigated (Blyth et al., 2005; Chuang et al., 2013; Groner, 2017; Ito et al., 2015). Indeed, RUNX1 (formerly AML1, acute myeloid leukemia 1) was first discovered in the human t(8;21) translocation (Miyoshi et al., 1991). Since then, point mutations and translocations involving RUNX1 have not only been linked with forms of leukemogenic and hereditary diseases (Sood et al., 2017), but also to epithelial tumors such as skin and oral cancers (Scheitz et al., 2012). RUNX1 is also implicated in the tumorigenesis of hormone-related organs, including breast, ovarian, uterine and prostate cancers (Riggio and Blyth, 2017). Misexpression of RUNX2 is associated with osteosarcoma development (Martin et al., 2011), as well as breast and prostate cancer bone metastasis (Chuang et al., 2017). RUNX3 is linked to solid-tissue tumorigenesis in the gastrointestinal system, pancreas and lung, where it exerts context-dependent pro- and anti-tumorigenic effects. However, its role in tumorigenesis remains controversial (Chuang et al., 2017; Lotem et al., 2017). Compensation between the RUNX genes means that assessment of redundancy during tumorigenesis is necessary (Kamikubo, 2018). Although transcription factors are difficult to target with pharmaceuticals, pan-inhibitors of RUNX factors have shown promising anti-tumor effects in pre-clinical settings by small-molecule inhibition of RUNX/CBFβ complexes (Illendula et al., 2016), or via pyrrole-imidazole polyamides, which selectively target the consensus RUNX motif in chromatin to prevent transcription (Morita et al., 2017).

Hematopoietic deletion of Runx1 in adult mice also results in decreased B and T cell numbers, and lower platelet counts (Growney et al., 2005; Ichikawa et al., 2004). Although RUNX1 is downregulated in mature erythrocytes and platelets, in vivo and in vitro studies have demonstrated a key role for RUNX1 in balancing specification of platelet-producing megakaryocytic lineage commitment through multiple interactions with, for example, AP-1, p300, GATA and ETS transcription factors (Elagib, 2003; Pencovich et al., 2011, 2013). Enforced RUNX1 expression in the K562 human cell line promotes megakaryopoiesis by directly repressing the erythroid lineage (Kuvardina et al., 2015). Surprisingly, the loss of Runx1 also causes an increased commitment to the megakaryocytic lineage (Behrens et al., 2016), perhaps due to the properties of the different RUNX1 isoforms (Box 1).

Despite its high expression in HSPCs, the requirements for RUNX3 in adult hematopoiesis have only been uncovered recently. Conditional hematopoietic Runx3 deletion results in mild HSPC expansion and myeloid proliferation in aged mice (Wang et al., 2013), which is reminiscent of the Runx1 conditional knockout model (Cai et al., 2011; Growney et al., 2005). Investigations into compensatory mechanisms utilized by RUNX1 and RUNX3 in adult hematopoiesis led to the development of a Runx1/Runx3 DKO model (Wang et al., 2014b). These mice die within 25 weeks of induction of the DKO phenotype, as a result of either bone marrow failure (BMF) or myeloproliferative disorders. Such seemingly contradictory phenotypes are reminiscent of Fanconi anemia, an inherited BMF syndrome caused by defective DNA repair, in which RUNX1/3 play crucial roles (Tay et al., 2018; Wang et al., 2014b). The reduction of all mature hematopoietic lineage compartments observed in DKO mice appears to be responsible for the BMF phenotype, which occurs in spite of the HSPC expansion (Wang et al., 2014b). More recently, downregulation of RUNX3 in human and mouse HSCs was found to be associated with aging and reduced erythroid potential (Balogh et al., 2019).

Immune system

RUNX proteins play multiple crucial roles in various immune cell subsets, both innate and acquired. In particular, RUNX1 and RUNX3 are involved at multiple stages of the complex cell-fate decisions of T lymphocyte development in the thymus (Fig. 5A). Early CD4/CD8 double-negative (DN) T cell progenitors commit to the T cell lineage in the thymus and differentiate from DN1 to DN3T cells in a RUNX1-dependent process (Ikawa et al., 2004; Kawamoto et al., 1999, 2000; Krueger and von Boehmer, 2007; Perry et al., 2004; Petrie, 2007). RUNX1 acts by inducing Bcl11b expression (Kueh et al., 2016), which in turn primes the T cell lineage-specifying genes, including Thpok (Zbtb7b) and Runx3 (Kojo et al., 2017; Liu et al., 2010). Conversely, deletion of Runx1 in T cells (Lck-Cre) results in a block at the DN3 stage, preventing their transition to robustly proliferating, pre-T cell receptor-expressing T cells (Egawa et al., 2007; Sato et al., 2003). In addition, RUNX proteins are crucial in determining the lineage choice between CD4 (T-helper)- and CD8 (cytotoxic)-positive T cells. A single transcriptional silencer is crucial for the repression of Cd4 transcription by RUNX1 in DN thymocytes, and by RUNX3 in the cytotoxic T-lineage (Collins et al., 2011; Sawada et al., 1994; Setoguchi et al., 2008; Siu et al., 1994; Steinke et al., 2014; Taniuchi et al., 2002; Zou et al., 2001). Additionally, RUNX3 positively regulates Cd8 expression to participate in the induction of the cytotoxic T cell fate (Hassan et al., 2011; Kohu et al., 2005).

Fig. 5.

RUNX-mediated regulation of B and T cell development. (A) RUNX1 and RUNX3 regulate T cell commitment and lineage fate decisions. RUNX1-directed transitions (T cell commitment, DN-to-DP transition, Treg and NKT cell selection) and RUNX3-directed transitions (CD8 Tc and CD8αα IEL lineage choice) are indicated. (B) RUNX proteins regulate B cell differentiation. RUNX1-directed transitions (early B cell differentiation, VDJ recombination, memory cell commitment) and RUNX2/3-directed transitions (IgA class switch recombination) are indicated. Ag, antigen; BCR, B cell receptor; CLP, common lymphoid progenitor; DN, CD4/CD8 double-negative cell; DP, CD4/CD8 double-positive T cell; ETP, early T-cell progenitor; IEL, intra-epithelial cell; NKT, natural killer T cell; Tc, cytotoxic T cell; Th, helper T cell; T reg, regulatory T cell.

Fig. 5.

RUNX-mediated regulation of B and T cell development. (A) RUNX1 and RUNX3 regulate T cell commitment and lineage fate decisions. RUNX1-directed transitions (T cell commitment, DN-to-DP transition, Treg and NKT cell selection) and RUNX3-directed transitions (CD8 Tc and CD8αα IEL lineage choice) are indicated. (B) RUNX proteins regulate B cell differentiation. RUNX1-directed transitions (early B cell differentiation, VDJ recombination, memory cell commitment) and RUNX2/3-directed transitions (IgA class switch recombination) are indicated. Ag, antigen; BCR, B cell receptor; CLP, common lymphoid progenitor; DN, CD4/CD8 double-negative cell; DP, CD4/CD8 double-positive T cell; ETP, early T-cell progenitor; IEL, intra-epithelial cell; NKT, natural killer T cell; Tc, cytotoxic T cell; Th, helper T cell; T reg, regulatory T cell.

Beyond regulating CD4/CD8 lineage choice, RUNX1 and RUNX3 are also essential in subtypes of effector T cells, including the specification of T-helper cell 17 cells (Wang et al., 2014a; Zhang et al., 2008b), mature CD8 cytotoxic T cells (Egawa and Littman, 2008; Woolf et al., 2003) and FOXP3+ regulatory T cells (Bruno et al., 2009; Kitoh et al., 2009; Ono et al., 2007; Rudra et al., 2009). RUNX1 is also crucial for the generation of natural killer T cells (Tachibana et al., 2011), whereas RUNX3 is implicated in T-helper type 1 cell-lineage specification (Djuretic et al., 2007), and tissue-resident memory CD8T cells (Milner et al., 2017). RUNX3 is also essential for memory cytotoxic T lymphocyte differentiation (Wang et al., 2018), and has also been suggested to play a role in the development of dendritic epidermal T cells (Woolf et al., 2007) and CD8αα intra-epithelial cells (Reis et al., 2013).

In the bone marrow, deletion of Runx1 (using Mx1-Cre) leads to defects in early B cell development (Growney et al., 2005; Ichikawa et al., 2004) that result in a loss of IgM+ B cells and altered VDJ recombination (Seo et al., 2012a) (Fig. 5B). Mechanistically, RUNX1 and CBFβ are thought to regulate and cooperate with the transcription factor EBF for progression to the pro-B cell stage (Maier et al., 2004; Seo et al., 2012a). RUNX2 and RUNX3 are involved later in mature effector B cells but their precise role remains to be dissected. In vitro, Runx3 knockout results in the absence of IgA production and appears to be required as a downstream target of transforming growth factor β (TGFβ) to mediate IgA class switch recombination (Fainaru et al., 2004; Shi and Stavnezer, 1998). However, in vivo, loss of Runx3 leads to equal or elevated IgA levels (Brenner et al., 2004; Watanabe et al., 2010). Interestingly, upon transplantation into mice, Runx2/Runx3 DKO splenocytes are impaired in their ability to produce IgA, in contrast to observations in single knockouts (Watanabe et al., 2010).

The contribution of RUNX1 and RUNX3 extends to other compartments of the immune system. Runx3-deficient mice have altered myeloid dendritic cell maturation, and lack Langerhans cells, the dendritic cells of the skin (Fainaru et al., 20042005). Although these mice have normal development of natural killer (NK) cells, RUNX3 has been shown to be important for the proliferation and maturation of IL15-induced NK cells (Levanon et al., 2014). Interestingly, Runx3 is crucial for the lineage commitment and function of innate lymphoid cells (Ebihara et al., 2015; Miyamoto et al., 2019; Yin et al., 2018), a recently described cell type of the mucosal immune response (reviewed by Eberl et al., 2015). Runx1 is important for basophil development (Mukai et al., 2012), but also in lymphoid tissue inducer cells, which are fundamental for the development of secondary lymphoid tissues such as lymph nodes and lymphatic tissue of the small intestine, known as Peyer's patches (Tachibana et al., 2011).

Skeletal development

Alongside the crucial roles of RUNX proteins in hematopoiesis, RUNX2 is a master regulator of skeletal development, playing multiple roles in the specification and differentiation of both the osteoblast and the chondrocyte lineage (reviewed by Komori, 2018). The formation of bony skeleton occurs through two distinct processes (Fig. 6). De novo bone formation in soft tissue is achieved by the differentiation of mesenchymal stem cells (MSCs) into osteoblasts, which mature into osteocytes and eventually form bone, in a process called intramembranous ossification (Marks and Odgren, 2002). Alternatively, MSCs can differentiate into chondrocytes, which form cartilage. This cartilage can either be permanent, or vascular invasion permits the arrival of osteoclast and mesenchymal cells, instigating endochondral ossification. The resident chondrocytes terminally differentiate and apoptose, whereas the mesenchymal cells differentiate into osteoblasts and form bone on the cartilage structures (Komori, 2018).

Fig. 6.

Roles of the RUNX factors in osteoblast and chondrocyte differentiation. Bone is generated through the differentiation of mesenchymal stem cells (MSCs) towards either bone-forming osteoblasts or cartilage-forming chondrocytes. The osteoblast fate choice and the maturation pathway resulting in intramembranous ossification are largely controlled by RUNX2. Cartilage differentiation is regulated by both RUNX2 and RUNX3 (adapted from Komori, 2018). Inhibitory roles are indicated by bars.

Fig. 6.

Roles of the RUNX factors in osteoblast and chondrocyte differentiation. Bone is generated through the differentiation of mesenchymal stem cells (MSCs) towards either bone-forming osteoblasts or cartilage-forming chondrocytes. The osteoblast fate choice and the maturation pathway resulting in intramembranous ossification are largely controlled by RUNX2. Cartilage differentiation is regulated by both RUNX2 and RUNX3 (adapted from Komori, 2018). Inhibitory roles are indicated by bars.

The role of Runx2 in bone formation was uncovered using knockout mouse models. Runx2-null mice die shortly after birth as a result of respiratory failure, and the analysis of their skeletons revealed them to be composed of cartilage and not bone. In these mice, osteoblasts are completely absent and there is virtually no bone matrix protein expression (Inada et al., 1999; Komori et al., 1997). Interestingly, increased extracellular glucose concentration is able to rescue the Runx2-null phenotype, but restoring Runx2 in cells lacking the glucose transporter Glut1 (Slc2a1) still leads to impaired bone formation (Wei et al., 2015).

Runx2 expression in MSCs leads to the acquisition of an osteoblast phenotype and is essential for osteoblast differentiation, particularly in preosteoblasts, through the regulation of osterix (Sp7) expression (Ducy et al., 1997; Inada et al., 1999; Komori et al., 1997; Maruyama et al., 2007; Otto et al., 1997). Runx2 expression peaks in preosteoblasts and immature osteoblasts, and decreases with osteoblast maturation (Maruyama et al., 2007). The function of RUNX2 in committed osteoblasts, however, is more controversial; Runx2 overexpression in committed osteoblasts (Col1a1-Cre) results in reduced bone formation and osteopenia (Geoffroy et al., 2002; Kanatani et al., 2006; Liu et al., 2001), but so does conditional Runx2 deletion in a model that produces a C-terminally truncated RUNX2 protein (Adhami et al., 2015). Overall, these results suggest that high Runx2 expression halts osteoblast maturation and prevents their transition to osteocytes by maintaining a more immature state, and that RUNX2 is crucial for de novo bone formation.

Although Runx2 knockout mice have entirely cartilaginous skeletons, severe inhibition of chondrocyte maturation is evident (Inada et al., 1999) and accompanied by defects in vascular invasion of the cartilage (Himeno et al., 2002; Zelzer et al., 2001). Runx2 is expressed in mature chondrocytes (Enomoto et al., 2000), and its depletion in vitro leads to a loss of the differentiated phenotype (Enomoto et al., 2004). In vivo overexpression of Runx2 in chondrocytes promotes chondrocyte maturation and endochondral ossification, whereas overexpression of a dominant-negative Runx2 or deletion of Runx2 has opposite effects (Chen et al., 2011; Takarada et al., 2013; Takeda et al., 2001; Ueta et al., 2001). In contrast, Runx2 is thought to inhibit chondrocyte proliferation and hypertrophy specifically in the perichondrium, a layer of fibrous tissue surrounding the cartilage (Hinoi et al., 2006). Taken together, RUNX2 is a key factor of chondrocyte maturation.

Besides RUNX2, the two other mammalian RUNX proteins have also been implicated in bone formation, albeit to a lesser extent. Runx3 is also expressed in the embryonic skeleton and partially redundant with Runx2; Runx3 knockout mice experience delayed endochondral ossification, but Runx2/3 DKO mice present a complete absence of chondrocyte maturation (Yoshida, 2004). In pre-committed osteoblasts, however, RUNX3 has a non-redundant role in regulating proliferation (Bauer et al., 2015). RUNX1 has also been implicated in chondrogenesis (Wang et al., 2005c), notably during sternal development (Kimura et al., 2010; Liakhovitskaia et al., 2010), and together with RUNX2 and RUNX3 in the development of the dental system (Chu et al., 2018; Wang et al., 2005a; Yamashiro et al., 2002).

The nervous system

The nervous system of bilateral animals is made of the central nervous system (CNS), which consists of the brain and the spinal cord, and the peripheral nervous system (PNS), which comprises the nerves and ganglia outside of the CNS. In the PNS, the dorsal root ganglia (DRG) sensory neurons transmit somatosensory stimuli to the spinal cord, including nociceptive (pain), mechanoreceptive (mechanical pressure) or proprioceptive (relative position) signals. The roles played by the RUNX factors in the mammalian neural system were first revealed with the generation of Runx3 knockout mice, which suffered from limb ataxia caused by defects in the TrkC (NTRK3)+ subset of neurons of the DRG (Inoue et al., 2002; Levanon et al., 2002).

During DRG development, a transient population of neuronal progenitors emerges around E10.5 and is characterized by the double expression of neurotrophic tyrosine kinase receptor family members TrkB (NTRK2)+ and TrkC+. These later differentiate into TrkB+ mechanoreceptive neurons or TrkC+ proprioceptive neurons. Runx3 expression is restricted to the TrkC+ proprioceptive neuronal lineage (Inoue et al., 2002; Levanon et al., 2002). Loss of Runx3 in TrkC+ neurons leads to upregulation of TrkB followed by neuronal cell death (Kramer et al., 2006; Levanon et al., 2002). Conversely, ectopic Runx3 expression suppresses TrkB and promotes TrkC expression (Kramer et al., 2006). In addition, prior to their death, TrkC neurons of Runx3 knockout embryos exhibit atypical proprioceptive axonal projections to peripheral and central targets, preferably innervating dorsal positions over the ventral spinal cord (Chen et al., 2006; Inoue et al., 2002; Nakamura et al., 2008), and ectopic Runx3 expression is sufficient to promote axonal projections to the ventral spinal cord (Kramer et al., 2006). Furthermore, RUNX3 has been recently shown to transcriptionally control positional information during axon extension (Lallemend et al., 2012). Overall, these studies demonstrate that Runx3 is crucial for the emergence and specification of proprioceptive neuronal circuits.

Besides RUNX3, RUNX1 is crucial for the diversification of sensory neuron lineages, in particular for when neurons differentiate into peptidergic [TrkA (NTRK1)+] and non-peptidergic (TrkA) subtypes. Runx1 is expressed at prenatal and perinatal stages, and remains expressed postnatally in non-peptidergic sensory neurons that innervate the skin epidermis and hair follicles, where it actively regulates further specification of cutaneous sensory neurons (Chen et al., 2006; Gascon et al., 2010; Kramer et al., 2006; Lou et al., 2015; Luo et al., 2007; Marmigère et al., 2006; Yang et al., 2013; Yoshikawa et al., 2007). At the transcriptional level, RUNX1 modulates the expression of nociceptive genes, by positively regulating genes involved in the non-peptidergic subtype, and repressing peptidergic genes (Chen et al., 2006; Kramer et al., 2006; Liu et al., 2008; Ugarte et al., 2013; Yoshikawa et al., 2007). Both in vivo and in vitro studies have shown that altering Runx1 expression is associated with defective axon growth and branching to defined target sites (Chen et al., 2006; Kramer et al., 2006; Yoshikawa et al., 2007).

In keeping with its role during PNS nociceptive neuron development, Runx1 is expressed in defined subtypes of terminally differentiated post-mitotic neurons. It has been proposed to be involved in the regulation of motor neuron diversity and circuit formation. Indeed, inactivation of Runx1 is associated with the apoptosis of cranial ganglion sensory neurons (Theriault et al., 2004). Runx1-expressing neurons project their axons to muscles mediating tongue protrusion, and disruption of Runx1 reduces the number of hypoglossal axon projections to the intrinsic muscles of the tongue (Yoshikawa et al., 2015). Runx1 expression has also been reported in other motor neuron subtypes, such as spinal motor neurons, suggesting a possible broader contribution to the control of posture and movement (Stifani et al., 2008).

Finally, Runx1 plays a unique role in the neuronal tissue of the olfactory system. Unlike most neural tissues, the olfactory system undergoes constant tissue regeneration. It connects the olfactory bulb and cortex in the brain to the olfactory epithelium in the nasal cavity. Runx1 expression is found in a specific type of undifferentiated mitotic olfactory sensory neurons where it participates in maintaining the pool of progenitor cells by regulating proliferation and delaying differentiation (Theriault et al., 2005). RUNX factors have also been implicated in the homeostasis of glial populations of the CNS and the PNS, including Schwann cells (Hung et al., 2015; Li et al., 2016) and astrocytes (Takarada et al., 2013). Interestingly, RUNX1 has been shown to suppress the proliferation of olfactory ensheathing cells, a specific glial population that ensheaths the non-myelinated axons of olfactory neurons (Murthy et al., 2014).

Hair follicles and epidermis

RUNX proteins, and in particular RUNX1, participate in hair follicle (HF) morphogenesis and maintenance. During development, Runx1 is expressed in both the HF epithelium and the surrounding mesenchyme (Levanon et al., 2001; Osorio et al., 2011; Raveh et al., 2006). In the forming epithelium, disruption of Runx1 expression delays HF development (Osorio et al., 2011). Loss of Runx1 in mesenchymal cells does not initially impact early HF development, but subsequently leads to the emergence of defective hair follicle stem cell (HFSC) precursors, which differentiate preferentially in enlarged sebaceous cysts instead of healthy hair bulbs (Osorio et al., 2011). After follicular morphogenesis, the hair growth cycle starts postnatally; Runx1 is expressed in specific HF compartments and absent in the surrounding mesenchyme (Osorio et al., 2011; Raveh et al., 2006). During the hair growth phase (anagen), Runx1 is broadly found in bulge cells. Loss of Runx1 impairs HFSCs self-renewal and delays entry into anagen (Hoi et al., 2010; Osorio et al., 2011). Conversely, ectopic expression of Runx1 during anagen initiates hair degeneration (Lee et al., 2014). During the resting phase (telogen), Runx1-null HFSCs are able to exit quiescence either with time (Hoi et al., 2010; Osorio et al., 2011) or following injury (Osorio et al., 2008), indicating that Runx1 is dispensable for this process. Like in other tissues, Runx1 dosage has an important role in the regulation of skin epithelial cell fate. Whereas low Runx1 expression in bulge stem cells enhances self-renewal (Hoi et al., 2010), higher RUNX1 levels promotes their transition towards early progenitor hair germ cells (Lee et al., 2014). Mechanistically, RUNX1 orchestrates HF specification and maturation by modulating Wnt signaling (Osorio et al., 2011), and regulates HFSCs proliferation in a P21 (Cdkn1a)-dependent manner (Hoi et al., 2010; Lee et al., 2013). Additionally, RUNX1 has been implicated in the lipid metabolism of skin epithelial cells by regulating fatty acid production (Jain et al., 2018). Runx1 is also expressed in mouse keratinocytes, where it collaborates with p63 (Trp63) to regulate the balance between proliferation and differentiation (Masse et al., 2012; Qu et al., 2018). In addition to Runx1, Runx2 is expressed in the dermal papillae and the bulb epithelium (Glotzer et al., 2008), whereas Runx3 is expressed in the dermal layer in placode and hair germ stages, and in the dermal papillae throughout the hair cycle (Raveh et al., 2005). However, deletion of neither Runx2 nor Runx3 results in major defects related to HF development.

Mammary gland

Specific roles of RUNX proteins in the development and functions of the mammary gland are also starting to emerge. The mammary gland is generated from the embryonic mammary placode and develops mainly after birth into a branched network of collecting ducts and tubes. The mammary gland undergoes further dynamic changes, greatly affected by hormone levels during estrous cycles, pregnancy and lactation. The epithelium of the mammary gland is composed of two distinct cell types forming a bilayer structure, in which the alveolar luminal secretory cells, responsible for milk production, are surrounded by basal or myoepithelial cells (Inman et al., 2015).

All three RUNX genes are expressed at different levels within the mouse mammary epithelium (Blyth et al., 2010). Runx1 is more highly expressed than Runx2, whereas Runx3 expression is barely detectable (McDonald et al., 2014; Owens et al., 2014; van Bragt et al., 2014). RUNX1 and RUNX2 levels are higher in the basal than in the luminal compartment (Kendrick et al., 2008; McDonald et al., 2014; van Bragt et al., 2014), and RUNX1 is completely absent in the alveolar luminal cells (van Bragt et al., 2014). The expression of the RUNX genes appears to fluctuate extensively; Runx1 is highly expressed in the epithelium of virgin females and post-lactation, but it gradually decreases throughout pregnancy to reach its lowest levels in late pregnancy and lactation (Blyth et al., 2010; van Bragt et al., 2014). This has been linked to the extensive tissue remodeling that takes place during pregnancy, which results in the large expansion of alveolar luminal cells that do not express Runx1 (Inman et al., 2015; van Bragt et al., 2014). In particular, Runx1 regulates the fate of the estrogen receptor-positive luminal lineage in vivo, where it represses the alveolar transcription factor Elf5 and promotes expression of a more mature luminal transcriptional program. Indeed, deletion of Runx1 results in a reduction of mature luminal cells (van Bragt et al., 2014). In vitro, 3D morphogenesis studies utilizing the non-tumorigenic basal-like MCF10A cell line have shown that Runx1 is essential to promote the differentiation of acinar structures into ductal and lobular tissue (Sokol et al., 2015; Wang et al., 2011b). Together, these results suggest that RUNX1 is required for the differentiation of luminal cells. In contrast, overexpression of Runx2 in the same cell line creates defects in acini formation and promotes proliferation (Owens et al., 2014; Pratap et al., 2006). In the HC11 cell line, an in vitro model of murine mammary cell differentiation, ectopic Runx2 expression potentiates the formation of mammospheres (Ferrari et al., 2015), structures retrospectively reflecting the presence of stem-like cells, therefore suggesting that Runx2 expression maintains a more stem/progenitor state (Owens et al., 2014). Accordingly, disruption of Runx2 expression decreases primary mammosphere formation in vitro and mammary regeneration in vivo (Ferrari et al., 2015). Furthermore, mouse models of both conditional overexpression and deletion of Runx2 result in abnormal development of the murine mammary epithelium, associated with lactation defects due to altered alveolar differentiation (McDonald et al., 2014; Owens et al., 2014).

Other tissues: muscle, cardiomyocytes, lacrimal gland and gastrointestinal tract

RUNX factors have been implicated in the biology of several other tissues that are subject to frequent repair and regeneration processes. High Runx1 expression has been reported in denervated skeletal muscles (Zhu et al., 1994), and in vivo deletion of Runx1 in skeletal muscle (Mck-Cre) has revealed a role for RUNX1 in protecting denervated myofibers from excessive atrophy, autophagy and muscle wasting (Wang et al., 2005b). Interestingly, although Runx1 is not expressed in naïve developing or adult striated muscle, its expression peaks following myopathic damage and is proposed to regulate the balance of myoblast proliferation and differentiation during muscle regeneration (Umansky et al., 2015).

Both RUNX1 mRNA and protein levels increase in cardiomyocytes following myocardial infarction, where RUNX1 modulates calcium uptake and contractile functions. Interestingly, this study also indicated that injured Runx1-deficient mice are protected from the adverse effects of cardiac remodeling (McCarroll et al., 2018).

In the lacrimal gland, which secretes the aqueous layer of the tear film, expression of both Runx1 and Runx3 is increased during tissue regeneration after inflammation-induced lacrimal gland damage. Furthermore, deletion of Runx1 is associated with impaired epithelial development of the gland (Voronov et al., 2013).

Runx3 deficiency in mice has been linked to the development of hyperplasia of the gastrointestinal tract, suggesting a role in regulating homeostasis of this tissue (Fukamachi et al., 2004; Ito et al., 2011; Li et al., 2002). Similarly, hyperplasia has been described in the lungs of Runx3-null mice, which suggests a role in regulating alveolar differentiation (Lee et al., 2011). However, it remains to be determined whether these observations are the result of cell-autonomous effects or broader consequences of Runx3 loss in other compartments, such as the immune system (Lotem et al., 2017).

In the last 30 years, vast progress has been made in understanding the function and regulation of RUNX transcription factors. They have been shown to play key roles in developmental and cellular processes, such as self-renewal, proliferation, cell lineage specification and differentiation in diverse tissues. However, our understanding of their functions and mechanisms of action remains limited to specific cell types and developmental stages, corresponding to loss-of-function phenotypes.

Moving forward, we need to expand our knowledge of the mechanisms behind the generation of their diverse isoform repertoire and their specific functions. We need to understand how RUNX activities are modulated by context-dependent post-transcriptional modifications, and co-factor interactions. We should also interrogate how RUNX factors positively or negatively regulate their own expression, while interacting with other transcriptional regulators. One underexplored aspect is to define how RUNX proteins cooperate and potentially compensate for each other. Another challenge will be to characterize the integration of RUNX activities with signaling pathways at the molecular level. Finally, it will be essential to map the precise genome-wide targets of RUNX1, RUNX2 and RUNX3 in stage-specific cell populations or even at the single cell level. Indeed, recent technical advances in single cell technologies now provide us with exciting new tools to address these challenges. Because all of the RUNX proteins have been linked with cancer (Box 2) and other disorders, understanding their molecular activities could have profound value in the diagnosis and treatment of a wide array of diseases.

We apologize for the many relevant studies that could not be discussed or cited owing to length restrictions. The authors thank the laboratories' members for critical reading of the manuscript.

Funding

Research in the authors' laboratory is supported by the Medical Research Council (MR/P000673/1), the Biotechnology and Biological Sciences Research Council (BB/I001794/1; BB/R007209/1), the European Union's Horizon 2020 (GA6586250) and Cancer Research UK (C5759/A20971).

Adhami
,
M. D.
,
Rashid
,
H.
,
Chen
,
H.
,
Clarke
,
J. C.
,
Yang
,
Y.
and
Javed
,
A.
(
2015
).
Loss of Runx2 in committed osteoblasts impairs postnatal skeletogenesis
.
J. Bone Miner. Res.
30
,
71
-
82
.
Aikawa
,
Y.
,
Nguyen
,
L. A.
,
Isono
,
K.
,
Takakura
,
N.
,
Tagata
,
Y.
,
Schmitz
,
M. L.
,
Koseki
,
H.
and
Kitabayashi
,
I.
(
2006
).
Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation
.
EMBO J.
25
,
3955
-
3965
.
Bae
,
S. C.
,
Ogawa
,
E.
,
Maruyama
,
M.
,
Oka
,
H.
,
Satake
,
M.
,
Shigesada
,
K.
,
Jenkins
,
N. A.
,
Gilbert
,
D. J.
,
Copeland
,
N. G.
and
Ito
,
Y.
(
1994
).
PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials
.
Mol. Cell. Biol.
14
,
3242
-
3252
.
Balogh
,
P.
,
Adelman
,
E. R.
,
Pluvinage
,
J. V.
,
Capaldo
,
B. J.
,
Freeman
,
K. C.
,
Singh
,
S.
,
Elagib
,
K. E.
,
Nakamura
,
Y.
,
Kurita
,
R.
,
Sashida
,
G.
, et al.
(
2019
).
RUNX3 levels in human hematopoietic progenitors are regulated by aging and dictate erythroid-myeloid balance
.
Haematologica
.
Bangsow
,
C.
,
Rubins
,
N.
,
Glusman
,
G.
,
Bernstein
,
Y.
,
Negreanu
,
V.
,
Goldenberg
,
D.
,
Lotem
,
J.
,
Ben-Asher
,
E.
,
Lancet
,
D.
,
Levanon
,
D.
, et al.
(
2001
).
The RUNX3 gene--sequence, structure and regulated expression
.
Gene
279
,
221
-
232
.
Bauer
,
O.
,
Sharir
,
A.
,
Kimura
,
A.
,
Hantisteanu
,
S.
,
Takeda
,
S.
and
Groner
,
Y.
(
2015
).
Loss of osteoblast Runx3 produces severe congenital osteopenia
.
Mol. Cell. Biol.
35
,
1097
-
1109
.
Bee
,
T.
,
Liddiard
,
K.
,
Swiers
,
G.
,
Bickley
,
S. R. B.
,
Vink
,
C. S.
,
Jarratt
,
A.
,
Hughes
,
J. R.
,
Medvinsky
,
A.
and
de Bruijn
,
M. F. T. R.
(
2009
).
Alternative Runx1 promoter usage in mouse developmental hematopoiesis
.
Blood Cells Mol. Dis.
43
,
35
-
42
.
Bee
,
T.
,
Swiers
,
G.
,
Muroi
,
S.
,
Pozner
,
A.
,
Nottingham
,
W.
,
Santos
,
A. C.
,
Li
,
P. S.
,
Taniuchi
,
I.
and
de Bruijn
,
M. F. T. R.
(
2010
).
Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis
.
Blood
115
,
3042
-
3050
.
Behrens
,
K.
,
Triviai
,
I.
,
Schwieger
,
M.
,
Tekin
,
N.
,
Alawi
,
M.
,
Spohn
,
M.
,
Indenbirken
,
D.
,
Ziegler
,
M.
,
Müller
,
U.
,
Alexander
,
W. S.
, et al.
(
2016
).
Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions
.
Blood
127
,
3369
-
3381
.
Ben-Ami
,
O.
,
Pencovich
,
N.
,
Lotem
,
J.
,
Levanon
,
D.
and
Groner
,
Y.
(
2009
).
A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis
.
Proc. Natl. Acad. Sci. USA
106
,
238
-
243
.
Bertrand
,
J. Y.
,
Chi
,
N. C.
,
Santoso
,
B.
,
Teng
,
S.
,
Stainier
,
D. Y. R.
and
Traver
,
D.
(
2010
).
Haematopoietic stem cells derive directly from aortic endothelium during development
.
Nature
464
,
108
-
111
.
Biggs
,
J. R.
,
Peterson
,
L. F.
,
Zhang
,
Y.
,
Kraft
,
A. S.
and
Zhang
,
D.-E.
(
2006
).
AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex
.
Mol. Cell. Biol.
26
,
7420
-
7429
.
Blyth
,
K.
,
Cameron
,
E. R.
and
Neil
,
J. C.
(
2005
).
The runx genes: gain or loss of function in cancer
.
Nat. Rev. Cancer
5
,
376
-
387
.
Blyth
,
K.
,
Vaillant
,
F.
,
Jenkins
,
A.
,
McDonald
,
L.
,
Pringle
,
M. A.
,
Huser
,
C.
,
Stein
,
T.
,
Neil
,
J.
and
Cameron
,
E. R.
(
2010
).
Runx2 in normal tissues and cancer cells: A developing story
.
Blood Cells Mol. Dis.
45
,
117
-
123
.
Boisset
,
J.-C.
,
van Cappellen
,
W.
,
Andrieu-Soler
,
C.
,
Galjart
,
N.
,
Dzierzak
,
E.
and
Robin
,
C.
(
2010
).
In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium
.
Nature
464
,
116
-
120
.
Brady
,
G.
,
Whiteman
,
H. J.
,
Spender
,
L. C.
and
Farrell
,
P. J.
(
2009
).
Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for epstein-barr virus-driven B-cell proliferation
.
J. Virol.
83
,
6909
-
6916
.
Brady
,
G.
,
Elgueta Karstegl
,
C.
and
Farrell
,
P. J.
(
2013
).
Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation
.
Nucleic Acids Res.
41
,
1555
-
1568
.
Bravo
,
J.
,
Li
,
Z.
,
Speck
,
N. A.
and
Warren
,
A. J.
(
2001
).
The leukemia-associated AML1 (Runx1)--CBF beta complex functions as a DNA-induced molecular clamp
.
Nat. Struct. Biol.
8
,
371
-
378
.
Brenner
,
O.
,
Levanon
,
D.
,
Negreanu
,
V.
,
Golubkov
,
O.
,
Fainaru
,
O.
,
Woolf
,
E.
and
Groner
,
Y.
(
2004
).
Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia
.
Proc. Natl. Acad. Sci. USA
101
,
16016
-
16021
.
Bresciani
,
E.
,
Carrington
,
B.
,
Wincovitch
,
S.
,
Jones
,
M.
,
Gore
,
A. V.
,
Weinstein
,
B. M.
,
Sood
,
R.
and
Liu
,
P. P.
(
2014
).
CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish
.
Blood
124
,
70
-
78
.
Bruno
,
L.
,
Mazzarella
,
L.
,
Hoogenkamp
,
M.
,
Hertweck
,
A.
,
Cobb
,
B. S.
,
Sauer
,
S.
,
Hadjur
,
S.
,
Leleu
,
M.
,
Naoe
,
Y.
,
Telfer
,
J. C.
, et al.
(
2009
).
Runx proteins regulate Foxp3 expression
.
J. Exp. Med.
206
,
2329
-
2337
.
Cai
,
Z.
,
de Bruijn
,
M.
,
Ma
,
X.
,
Dortland
,
B.
,
Luteijn
,
T.
,
Downing
,
J. R.
and
Dzierzak
,
E.
(
2000
).
Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo
.
Immunity
13
,
423
-
431
.
Cai
,
X.
,
Gaudet
,
J. J.
,
Mangan
,
J. K.
,
Chen
,
M. J.
,
De Obaldia
,
M. E.
,
Oo
,
Z.
,
Ernst
,
P.
and
Speck
,
N. A.
(
2011
).
Runx1 loss minimally impacts long-term hematopoietic stem cells
.
PLoS ONE
6
,
e28430
.
Cai
,
X.
,
Gao
,
L.
,
Teng
,
L.
,
Ge
,
J.
,
Oo
,
Z. M.
,
Kumar
,
A. R.
,
Gilliland
,
D. G.
,
Mason
,
P. J.
,
Tan
,
K.
and
Speck
,
N. A.
(
2015
).
Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells
.
Cell Stem Cell
17
,
165
-
177
.
Challen
,
G. A.
and
Goodell
,
M. A.
(
2010
).
Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells
.
Exp. Hematol.
38
,
403
-
416
.
Chen
,
C.-L.
,
Broom
,
D. C.
,
Liu
,
Y.
,
de Nooij
,
J. C.
,
Li
,
Z.
,
Cen
,
C.
,
Samad
,
O. A.
,
Jessell
,
T. M.
,
Woolf
,
C. J.
and
Ma
,
Q.
(
2006
).
Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain
.
Neuron
49
,
365
-
377
.
Chen
,
M. J.
,
Yokomizo
,
T.
,
Zeigler
,
B. M.
,
Dzierzak
,
E.
and
Speck
,
N. A.
(
2009
).
Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
.
Nature
457
,
887
-
891
.
Chen
,
H.
,
Ghori-Javed
,
F. Y.
,
Rashid
,
H.
,
Serra
,
R.
,
Gutierrez
,
S. E.
and
Javed
,
A.
(
2011
).
Chondrocyte-specific regulatory activity of Runx2 is essential for survival and skeletal development
.
Cells Tissues Organs
194
,
161
-
165
.
Chu
,
Q.
,
Gao
,
Y.
,
Gao
,
X.
,
Dong
,
Z.
,
Song
,
W.
,
Xu
,
Z.
,
Xiang
,
L.
,
Wang
,
Y.
,
Zhang
,
L.
,
Li
,
M.
, et al.
(
2018
).
Ablation of Runx2 in ameloblasts suppresses enamel maturation in tooth development
.
Sci. Rep.
8
,
9594
.
Chuang
,
L. S. H.
,
Ito
,
K.
and
Ito
,
Y.
(
2013
).
RUNX family: regulation and diversification of roles through interacting proteins
.
Int. J. Cancer
132
,
1260
-
1271
.
Chuang
,
L. S. H.
,
Ito
,
K.
and
Ito
,
Y.
(
2017
).
Roles of RUNX in solid tumors
.
Adv. Exp. Med. Biol.
962
,
299
-
320
.
Chung
,
D. D.
,
Honda
,
K.
,
Cafuir
,
L.
,
McDuffie
,
M.
and
Wotton
,
D.
(
2007
).
The Runx3 distal transcript encodes an additional transcriptional activation domain
.
FEBS J.
274
,
3429
-
3439
.
Collins
,
A.
,
Hewitt
,
S. L.
,
Chaumeil
,
J.
,
Sellars
,
M. L.
,
Micsinai
,
M.
,
Allinne
,
J.
,
Parisi
,
F.
,
Nora
,
E. P.
,
Bolland
,
D. J.
,
Corcoran
,
A. E.
, et al.
(
2011
).
RUNX transcription factor-mediated association of Cd4 and Cd8 enables coordinate gene regulation
.
Immunity
34
,
303
-
314
.
Costa
,
G.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2012
).
Origin of blood cells and HSC production in the embryo
.
Trends Immunol.
33
,
215
-
223
.
de Bruijn
,
M.
and
Dzierzak
,
E.
(
2017
).
Runx transcription factors in the development and function of the definitive hematopoietic system
.
Blood
129
,
2061
-
2069
.
Dicken
,
J.
,
Mildner
,
A.
,
Leshkowitz
,
D.
,
Touw
,
I. P.
,
Hantisteanu
,
S.
,
Jung
,
S.
and
Groner
,
Y.
(
2013
).
Transcriptional reprogramming of CD11b+Esamhi dendritic cell identity and function by loss of Runx3
.
PLoS One
8
,
e77490
.
Djuretic
,
I. M.
,
Levanon
,
D.
,
Negreanu
,
V.
,
Groner
,
Y.
,
Rao
,
A.
and
Ansel
,
K. M.
(
2007
).
Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells
.
Nat. Immunol.
8
,
145
-
153
.
Draper
,
J. E.
,
Sroczynska
,
P.
,
Tsoulaki
,
O.
,
Leong
,
H. S.
,
Fadlullah
,
M. Z. H.
,
Miller
,
C.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2016
).
RUNX1B expression is highly heterogeneous and distinguishes megakaryocytic and erythroid lineage fate in adult mouse hematopoiesis
.
PLoS Genet.
12
,
e1005814
.
Draper
,
J. E.
,
Sroczynska
,
P.
,
Leong
,
H. S.
,
Fadlullah
,
M. Z. H.
,
Miller
,
C.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2017
).
Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors
.
Blood
130
,
271
-
284
.
Drissi
,
H.
,
Luc
,
Q.
,
Shakoori
,
R.
,
Chuva De Sousa Lopes
,
S.
,
Choi
,
J.-Y.
,
Terry
,
A.
,
Hu
,
M.
,
Jones
,
S.
,
Neil
,
J. C.
,
Lian
,
J. B.
, et al.
(
2000
).
Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene
.
J. Cell. Physiol.
184
,
341
-
350
.
Ducy
,
P.
,
Zhang
,
R.
,
Geoffroy
,
V.
,
Ridall
,
A. L.
and
Karsenty
,
G.
(
1997
).
Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation
.
Cell
89
,
747
-
754
.
Ducy
,
P.
,
Starbuck
,
M.
,
Priemel
,
M.
,
Shen
,
J.
,
Pinero
,
G.
,
Geoffroy
,
V.
,
Amling
,
M.
and
Karsenty
,
G.
(
1999
).
A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development
.
Genes Dev.
13
,
1025
-
1036
.
Eberl
,
G.
,
Colonna
,
M.
,
Di Santo
,
J. P.
and
McKenzie
,
A. N. J.
(
2015
).
Innate lymphoid cells: a new paradigm in immunology
.
Science
348
,
aaa6566
.
Ebihara
,
T.
,
Song
,
C.
,
Ryu
,
S. H.
,
Plougastel-Douglas
,
B.
,
Yang
,
L.
,
Levanon
,
D.
,
Groner
,
Y.
,
Bern
,
M. D.
,
Stappenbeck
,
T. S.
,
Colonna
,
M.
, et al.
(
2015
).
Runx3 specifies lineage commitment of innate lymphoid cells
.
Nat. Immunol.
16
,
1124
-
1133
.
Ebihara
,
T.
,
Seo
,
W.
and
Taniuchi
,
I.
(
2017
).
Roles of RUNX complexes in immune cell development
.
Adv. Exp. Med. Biol.
962
,
395
-
413
.
Egawa
,
T.
and
Littman
,
D. R.
(
2008
).
ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage
.
Nat. Immunol.
9
,
1131
-
1139
.
Egawa
,
T.
,
Tillman
,
R. E.
,
Naoe
,
Y.
,
Taniuchi
,
I.
and
Littman
,
D. R.
(
2007
).
The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells
.
J. Exp. Med.
204
,
1945
-
1957
.
Eilken
,
H. M.
,
Nishikawa
,
S.-I.
and
Schroeder
,
T.
(
2009
).
Continuous single-cell imaging of blood generation from haemogenic endothelium
.
Nature
457
,
896
-
900
.
Elagib
,
K. E.
(
2003
).
RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation
.
Blood
101
,
4333
-
4341
.
Eliades
,
A.
,
Wareing
,
S.
,
Marinopoulou
,
E.
,
Fadlullah
,
M. Z. H.
,
Patel
,
R.
,
Grabarek
,
J. B.
,
Plusa
,
B.
,
Lacaud
,
G.
and
Kouskoff
,
V.
(
2016
).
The Hemogenic competence of endothelial progenitors is restricted by Runx1 silencing during embryonic development
.
Cell Rep.
15
,
2185
-
2199
.
Enomoto
,
H.
,
Enomoto-Iwamoto
,
M.
,
Iwamoto
,
M.
,
Nomura
,
S.
,
Himeno
,
M.
,
Kitamura
,
Y.
,
Kishimoto
,
T.
and
Komori
,
T.
(
2000
).
Cbfa1 is a positive regulatory factor in chondrocyte maturation
.
J. Biol. Chem.
275
,
8695
-
8702
.
Enomoto
,
H.
,
Furuichi
,
T.
,
Zanma
,
A.
,
Yamana
,
K.
,
Yoshida
,
C.
,
Sumitani
,
S.
,
Yamamoto
,
H.
,
Enomoto-Iwamoto
,
M.
,
Iwamoto
,
M.
and
Komori
,
T.
(
2004
).
Runx2 deficiency in chondrocytes causes adipogenic changes in vitro
.
J. Cell. Sci.
117
,
417
-
425
.
Fainaru
,
O.
,
Woolf
,
E.
,
Lotem
,
J.
,
Yarmus
,
M.
,
Brenner
,
O.
,
Goldenberg
,
D.
,
Negreanu
,
V.
,
Bernstein
,
Y.
,
Levanon
,
D.
,
Jung
,
S.
, et al.
(
2004
).
Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation
.
EMBO J.
23
,
969
-
979
.
Fainaru
,
O.
,
Shseyov
,
D.
,
Hantisteanu
,
S.
and
Groner
,
Y.
(
2005
).
Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease
.
Proc. Natl. Acad. Sci. USA
102
,
10598
-
10603
.
Ferrari
,
N.
,
Riggio
,
A. I.
,
Mason
,
S.
,
McDonald
,
L.
,
King
,
A.
,
Higgins
,
T.
,
Rosewell
,
I.
,
Neil
,
J. C.
,
Smalley
,
M. J.
,
Sansom
,
O. J.
, et al.
(
2015
).
Runx2 contributes to the regenerative potential of the mammary epithelium
.
Sci. Rep.
5
,
15658
.
Frame
,
J. M.
,
Fegan
,
K. H.
,
Conway
,
S. J.
,
McGrath
,
K. E.
and
Palis
,
J.
(
2016
).
Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity
.
Stem Cells
34
,
431
-
444
.
Fujita
,
Y.
,
Nishimura
,
M.
,
Taniwaki
,
M.
,
Abe
,
T.
and
Okuda
,
T.
(
2001
).
Identification of an alternatively spliced form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development
.
Biochem. Biophys. Res. Commun.
281
,
1248
-
1255
.
Fukamachi
,
H.
,
Ito
,
K.
and
Ito
,
Y.
(
2004
).
Runx3−/− gastric epithelial cells differentiate into intestinal type cells
.
Biochem. Biophys. Res. Commun.
321
,
58
-
64
.
Fukushima-Nakase
,
Y.
(
2005
).
Shared and distinct roles mediated through C-terminal subdomains of acute myeloid leukemia/Runt-related transcription factor molecules in murine development
.
Blood
105
,
4298
-
4307
.
Gao
,
L.
,
Tober
,
J.
,
Gao
,
P.
,
Chen
,
C.
,
Tan
,
K.
and
Speck
,
N. A.
(
2018
).
RUNX1 and the endothelial origin of blood
.
Exp. Hematol.
68
,
2
-
9
.
Gascon
,
E.
,
Gaillard
,
S.
,
Malapert
,
P.
,
Liu
,
Y.
,
Rodat-Despoix
,
L.
,
Samokhvalov
,
I. M.
,
Delmas
,
P.
,
Helmbacher
,
F.
,
Maina
,
F.
and
Moqrich
,
A.
(
2010
).
Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons
.
J. Neurosci.
30
,
12414
-
12423
.
Geoffroy
,
V.
,
Corral
,
D. A.
,
Zhou
,
L.
,
Lee
,
B.
and
Karsenty
,
G.
(
1998
).
Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function
.
Mamm. Genome
9
,
54
-
57
.
Geoffroy
,
V.
,
Kneissel
,
M.
,
Fournier
,
B.
,
Boyde
,
A.
and
Matthias
,
P.
(
2002
).
High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage
.
Mol. Cell. Biol.
22
,
6222
-
6233
.
Gergen
,
J. P.
and
Butler
,
B. A.
(
1988
).
Isolation of the Drosophila segmentation gene runt and analysis of its expression during embryogenesis
.
Genes Dev.
2
,
1179
-
1193
.
Ghozi
,
M. C.
,
Bernstein
,
Y.
,
Negreanu
,
V.
,
Levanon
,
D.
and
Groner
,
Y.
(
1996
).
Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions
.
Proc. Natl. Acad. Sci. USA
93
,
1935
-
1940
.
Glotzer
,
D. J.
,
Zelzer
,
E.
and
Olsen
,
B. R.
(
2008
).
Impaired skin and hair follicle development in Runx2 deficient mice
.
Dev. Biol.
315
,
459
-
473
.
Goh
,
Y.-M.
,
Cinghu
,
S.
,
Hong
,
E. T. H.
,
Lee
,
Y.-S.
,
Kim
,
J.-H.
,
Jang
,
J.-W.
,
Li
,
Y.-H.
,
Chi
,
X.-Z.
,
Lee
,
K.-S.
,
Wee
,
H.
, et al.
(
2010
).
Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm
.
J. Biol. Chem.
285
,
10122
-
10129
.
Goyama
,
S.
,
Yamaguchi
,
Y.
,
Imai
,
Y.
,
Kawazu
,
M.
,
Nakagawa
,
M.
,
Asai
,
T.
,
Kumano
,
K.
,
Mitani
,
K.
,
Ogawa
,
S.
,
Chiba
,
S.
, et al.
(
2004
).
The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region
.
Blood
104
,
3558
-
3564
.
Goyama
,
S.
,
Huang
,
G.
,
Kurokawa
,
M.
and
Mulloy
,
J. C.
(
2015
).
Posttranslational modifications of RUNX1 as potential anticancer targets
.
Oncogene
34
,
3483
-
3492
.
Groner
,
Y.
(
2017
).
RUNX Proteins in Development and Cancer
.
New York, NY
:
Springer Berlin Heidelberg
.
Growney
,
J. D.
,
Shigematsu
,
H.
,
Li
,
Z.
,
Lee
,
B. H.
,
Adelsperger
,
J.
,
Rowan
,
R.
,
Curley
,
D. P.
,
Kutok
,
J. L.
,
Akashi
,
K.
,
Williams
,
I. R.
, et al.
(
2005
).
Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
.
Blood
106
,
494
-
504
.
Guo
,
H.
and
Friedman
,
A. D.
(
2011
).
Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3
.
J. Biol. Chem.
286
,
208
-
215
.
Harada
,
H.
,
Tagashira
,
S.
,
Fujiwara
,
M.
,
Ogawa
,
S.
,
Katsumata
,
T.
,
Yamaguchi
,
A.
,
Komori
,
T.
and
Nakatsuka
,
M.
(
1999
).
Cbfa1 isoforms exert functional differences in osteoblast differentiation
.
J. Biol. Chem.
274
,
6972
-
6978
.
Hassan
,
H.
,
Sakaguchi
,
S.
,
Tenno
,
M.
,
Kopf
,
A.
,
Boucheron
,
N.
,
Carpenter
,
A. C.
,
Egawa
,
T.
,
Taniuchi
,
I.
and
Ellmeier
,
W.
(
2011
).
Cd8 enhancer E8I and Runx factors regulate CD8α expression in activated CD8+ T cells
.
Proc. Natl. Acad. Sci. USA
108
,
18330
-
18335
.
Herglotz
,
J.
,
Kuvardina
,
O. N.
,
Kolodziej
,
S.
,
Kumar
,
A.
,
Hussong
,
H.
,
Grez
,
M.
and
Lausen
,
J.
(
2013
).
Histone arginine methylation keeps RUNX1 target genes in an intermediate state
.
Oncogene
32
,
2565
-
2575
.
Himeno
,
M.
,
Enomoto
,
H.
,
Liu
,
W.
,
Ishizeki
,
K.
,
Nomura
,
S.
,
Kitamura
,
Y.
and
Komori
,
T.
(
2002
).
Impaired vascular invasion of Cbfa1-deficient cartilage engrafted in the spleen
.
J. Bone Miner. Res.
17
,
1297
-
1305
.
Hinoi
,
E.
,
Bialek
,
P.
,
Chen
,
Y.-T.
,
Rached
,
M.-T.
,
Groner
,
Y.
,
Behringer
,
R. R.
,
Ornitz
,
D. M.
and
Karsenty
,
G.
(
2006
).
Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium
.
Genes Dev.
20
,
2937
-
2942
.
Hoi
,
C. S. L.
,
Lee
,
S. E.
,
Lu
,
S.-Y.
,
McDermitt
,
D. J.
,
Osorio
,
K. M.
,
Piskun
,
C. M.
,
Peters
,
R. M.
,
Paus
,
R.
and
Tumbar
,
T.
(
2010
).
Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin
.
Mol. Cell. Biol.
30
,
2518
-
2536
.
Hoogenkamp
,
M.
,
Lichtinger
,
M.
,
Krysinska
,
H.
,
Lancrin
,
C.
,
Clarke
,
D.
,
Williamson
,
A.
,
Mazzarella
,
L.
,
Ingram
,
R.
,
Jorgensen
,
H.
,
Fisher
,
A.
, et al.
(
2009
).
Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program
.
Blood
114
,
299
-
309
.
Huang
,
G.
,
Shigesada
,
K.
,
Ito
,
K.
,
Wee
,
H.-J.
,
Yokomizo
,
T.
and
Ito
,
Y.
(
2001
).
Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation
.
EMBO J.
20
,
723
-
733
.
Huang
,
G.
,
Zhang
,
P.
,
Hirai
,
H.
,
Elf
,
S.
,
Yan
,
X.
,
Chen
,
Z.
,
Koschmieder
,
S.
,
Okuno
,
Y.
,
Dayaram
,
T.
,
Growney
,
J. D.
, et al.
(
2008
).
PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis
.
Nat. Genet.
40
,
51
-
60
.
Huang
,
H.
,
Woo
,
A. J.
,
Waldon
,
Z.
,
Schindler
,
Y.
,
Moran
,
T. B.
,
Zhu
,
H. H.
,
Feng
,
G.-S.
,
Steen
,
H.
and
Cantor
,
A. B.
(
2012
).
A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation
.
Genes Dev.
26
,
1587
-
1601
.
Hung
,
H. A.
,
Sun
,
G.
,
Keles
,
S.
and
Svaren
,
J.
(
2015
).
Dynamic regulation of Schwann cell enhancers after peripheral nerve injury
.
J. Biol. Chem.
290
,
6937
-
6950
.
Ichikawa
,
M.
,
Asai
,
T.
,
Saito
,
T.
,
Yamamoto
,
G.
,
Seo
,
S.
,
Yamazaki
,
I.
,
Yamagata
,
T.
,
Mitani
,
K.
,
Chiba
,
S.
,
Hirai
,
H.
, et al.
(
2004
).
AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
.
Nat. Med.
10
,
299
-
304
.
Ikawa
,
T.
,
Masuda
,
K.
,
Lu
,
M.
,
Minato
,
N.
,
Katsura
,
Y.
and
Kawamoto
,
H.
(
2004
).
Identification of the earliest prethymic T-cell progenitors in murine fetal blood
.
Blood
103
,
530
-
537
.
Illendula
,
A.
,
Gilmour
,
J.
,
Grembecka
,
J.
,
Tirumala
,
V. S. S.
,
Boulton
,
A.
,
Kuntimaddi
,
A.
,
Schmidt
,
C.
,
Wang
,
L.
,
Pulikkan
,
J. A.
,
Zong
,
H.
, et al.
(
2016
).
Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers
.
EBioMedicine
8
,
117
-
131
.
Imai
,
Y.
,
Kurokawa
,
M.
,
Tanaka
,
K.
,
Friedman
,
A. D.
,
Ogawa
,
S.
,
Mitani
,
K.
,
Yazaki
,
Y.
and
Hirai
,
H.
(
1998
).
TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation
.
Biochem. Biophys. Res. Commun.
252
,
582
-
589
.
Imai
,
Y.
,
Kurokawa
,
M.
,
Yamaguchi
,
Y.
,
Izutsu
,
K.
,
Nitta
,
E.
,
Mitani
,
K.
,
Satake
,
M.
,
Noda
,
T.
,
Ito
,
Y.
and
Hirai
,
H.
(
2004
).
The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1
.
Mol. Cell. Biol.
24
,
1033
-
1043
.
Inada
,
M.
,
Yasui
,
T.
,
Nomura
,
S.
,
Miyake
,
S.
,
Deguchi
,
K.
,
Himeno
,
M.
,
Sato
,
M.
,
Yamagiwa
,
H.
,
Kimura
,
T.
,
Yasui
,
N.
, et al.
(
1999
).
Maturational disturbance of chondrocytes in Cbfa1-deficient mice
.
Dev. Dyn.
214
,
279
-
290
.
Inman
,
J. L.
,
Robertson
,
C.
,
Mott
,
J. D.
and
Bissell
,
M. J.
(
2015
).
Mammary gland development: cell fate specification, stem cells and the microenvironment
.
Development
142
,
1028
-
1042
.
Inoue
,
K.-I.
,
Ozaki
,
S.
,
Shiga
,
T.
,
Ito
,
K.
,
Masuda
,
T.
,
Okado
,
N.
,
Iseda
,
T.
,
Kawaguchi
,
S.
,
Ogawa
,
M.
,
Bae
,
S.-C.
, et al.
(
2002
).
Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons
.
Nat. Neurosci.
5
,
946
-
954
.
Ito
,
K.
,
Chuang
,
L. S. H.
,
Ito
,
T.
,
Chang
,
T. L.
,
Fukamachi
,
H.
,
Salto-Tellez
,
M.
and
Ito
,
Y.
(
2011
).
Loss of Runx3 is a key event in inducing precancerous state of the stomach
.
Gastroenterology
140
,
1536
-
1546.e8
.
Ito
,
Y.
,
Bae
,
S.-C.
and
Chuang
,
L. S. H.
(
2015
).
The RUNX family: developmental regulators in cancer
.
Nat. Rev. Cancer
15
,
81
-
95
.
Jacob
,
B.
,
Osato
,
M.
,
Yamashita
,
N.
,
Wang
,
C. Q.
,
Taniuchi
,
I.
,
Littman
,
D. R.
,
Asou
,
N.
and
Ito
,
Y.
(
2010
).
Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis
.
Blood
115
,
1610
-
1620
.
Jaffredo
,
T.
,
Gautier
,
R.
,
Eichmann
,
A.
and
Dieterlen-Lièvre
,
F.
(
1998
).
Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny
.
Development
125
,
4575
-
4583
.
Jain
,
P.
,
Nattakom
,
M.
,
Holowka
,
D.
,
Wang
,
D. H.
,
Thomas Brenna
,
J.
,
Ku
,
A. T.
,
Nguyen
,
H.
,
Ibrahim
,
S. F.
and
Tumbar
,
T.
(
2018
).
Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity: Runx1 mediates proliferation via changes in lipid metabolism
.
Stem Cells
36
,
1603
-
1616
.
Jeon
,
E.-J.
,
Lee
,
K.-Y.
,
Choi
,
N.-S.
,
Lee
,
M.-H.
,
Kim
,
H.-N.
,
Jin
,
Y.-H.
,
Ryoo
,
H.-M.
,
Choi
,
J.-Y.
,
Yoshida
,
M.
,
Nishino
,
N.
, et al.
(
2006
).
Bone morphogenetic protein-2 stimulates Runx2 acetylation
.
J. Biol. Chem.
281
,
16502
-
16511
.
Jin
,
Y.-H.
,
Jeon
,
E.-J.
,
Li
,
Q.-L.
,
Lee
,
Y. H.
,
Choi
,
J.-K.
,
Kim
,
W.-J.
,
Lee
,
K.-Y.
and
Bae
,
S.-C.
(
2004
).
Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation
.
J. Biol. Chem.
279
,
29409
-
29417
.
Kamachi
,
Y.
,
Ogawa
,
E.
,
Asano
,
M.
,
Ishida
,
S.
,
Murakami
,
Y.
,
Satake
,
M.
,
Ito
,
Y.
and
Shigesada
,
K.
(
1990
).
Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer
.
J. Virol.
64
,
4808
-
4819
.
Kamikubo
,
Y.
(
2018
).
Genetic compensation of RUNX family transcription factors in leukemia
.
Cancer Sci.
109
,
2358
-
2363
.
Kanatani
,
N.
,
Fujita
,
T.
,
Fukuyama
,
R.
,
Liu
,
W.
,
Yoshida
,
C. A.
,
Moriishi
,
T.
,
Yamana
,
K.
,
Miyazaki
,
T.
,
Toyosawa
,
S.
and
Komori
,
T.
(
2006
).
Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development
.
Dev. Biol.
296
,
48
-
61
.
Kanaykina
,
N.
,
Abelson
,
K.
,
King
,
D.
,
Liakhovitskaia
,
A.
,
Schreiner
,
S.
,
Wegner
,
M.
and
Kozlova
,
E. N.
(
2010
).
In vitro and in vivo effects on neural crest stem cell differentiation by conditional activation of Runx1 short isoform and its effect on neuropathic pain behavior
.
Upsala J. Med. Sci.
115
,
56
-
64
.
Kawamoto
,
H.
,
Ohmura
,
K.
,
Fujimoto
,
S.
and
Katsura
,
Y.
(
1999
).
Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver
.
J. Immunol.
162
,
2725
-
2731
.
Kawamoto
,
H.
,
Ikawa
,
T.
,
Ohmura
,
K.
,
Fujimoto
,
S.
and
Katsura
,
Y.
(
2000
).
T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver
.
Immunity
12
,
441
-
450
.
Kendrick
,
H.
,
Regan
,
J. L.
,
Magnay
,
F.-A.
,
Grigoriadis
,
A.
,
Mitsopoulos
,
C.
,
Zvelebil
,
M.
and
Smalley
,
M. J.
(
2008
).
Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate
.
BMC Genomics
9
,
591
.
Kilbey
,
A.
,
Blyth
,
K.
,
Wotton
,
S.
,
Terry
,
A.
,
Jenkins
,
A.
,
Bell
,
M.
,
Hanlon
,
L.
,
Cameron
,
E. R.
and
Neil
,
J. C.
(
2007
).
Disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts
.
Cancer Res.
67
,
11263
-
11271
.
Kim
,
H.-R.
,
Oh
,
B.-C.
,
Choi
,
J.-K.
and
Bae
,
S.-C.
(
2008
).
Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization
.
J. Cell. Biochem.
105
,
1048
-
1058
.
Kim
,
J.-H.
,
Jang
,
J.-W.
,
Lee
,
Y.-S.
,
Lee
,
J.-W.
,
Chi
,
X.-Z.
,
Li
,
Y.-H.
,
Kim
,
M.-K.
,
Kim
,
D.-M.
,
Choi
,
B.-S.
,
Kim
,
J.
, et al.
(
2014
).
RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation
.
Oncogenesis
3
,
e101
.
Kimura
,
A.
,
Inose
,
H.
,
Yano
,
F.
,
Fujita
,
K.
,
Ikeda
,
T.
,
Sato
,
S.
,
Iwasaki
,
M.
,
Jinno
,
T.
,
Ae
,
K.
,
Fukumoto
,
S.
, et al.
(
2010
).
Runx1 and Runx2 cooperate during sternal morphogenesis
.
Development
137
,
1159
-
1167
.
Kissa
,
K.
and
Herbomel
,
P.
(
2010
).
Blood stem cells emerge from aortic endothelium by a novel type of cell transition
.
Nature
464
,
112
-
115
.
Kitabayashi
,
I.
,
Aikawa
,
Y.
,
Nguyen
,
L. A.
,
Yokoyama
,
A.
and
Ohki
,
M.
(
2001
).
Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein
.
EMBO J.
20
,
7184
-
7196
.
Kitoh
,
A.
,
Ono
,
M.
,
Naoe
,
Y.
,
Ohkura
,
N.
,
Yamaguchi
,
T.
,
Yaguchi
,
H.
,
Kitabayashi
,
I.
,
Tsukada
,
T.
,
Nomura
,
T.
,
Miyachi
,
Y.
, et al.
(
2009
).
Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells
.
Immunity
31
,
609
-
620
.
Kohu
,
K.
,
Sato
,
T.
,
Ohno
,
S.-I.
,
Hayashi
,
K.
,
Uchino
,
R.
,
Abe
,
N.
,
Nakazato
,
M.
,
Yoshida
,
N.
,
Kikuchi
,
T.
,
Iwakura
,
Y.
, et al.
(
2005
).
Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage
.
J. Immunol.
174
,
2627
-
2636
.
Kojo
,
S.
,
Tanaka
,
H.
,
Endo
,
T. A.
,
Muroi
,
S.
,
Liu
,
Y.
,
Seo
,
W.
,
Tenno
,
M.
,
Kakugawa
,
K.
,
Naoe
,
Y.
,
Nair
,
K.
, et al.
(
2017
).
Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes
.
Nat. Commun.
8
,
702
.
Komeno
,
Y.
,
Yan
,
M.
,
Matsuura
,
S.
,
Lam
,
K.
,
Lo
,
M.-C.
,
Huang
,
Y.-J.
,
Tenen
,
D. G.
,
Downing
,
J. R.
and
Zhang
,
D.-E.
(
2014
).
Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice
.
Blood
123
,
3760
-
3769
.
Komori
,
T.
(
2018
).
Runx2, an inducer of osteoblast and chondrocyte differentiation
.
Histochem. Cell Biol.
149
,
313
-
323
.
Komori
,
T.
,
Yagi
,
H.
,
Nomura
,
S.
,
Yamaguchi
,
A.
,
Sasaki
,
K.
,
Deguchi
,
K.
,
Shimizu
,
Y.
,
Bronson
,
R. T.
,
Gao
,
Y.-H.
,
Inada
,
M.
, et al.
(
1997
).
Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts
.
Cell
89
,
755
-
764
.
Kramer
,
I.
,
Sigrist
,
M.
,
de Nooij
,
J. C.
,
Taniuchi
,
I.
,
Jessell
,
T. M.
and
Arber
,
S.
(
2006
).
A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification
.
Neuron
49
,
379
-
393
.
Krueger
,
A.
and
von Boehmer
,
H.
(
2007
).
Identification of a T lineage-committed progenitor in adult blood
.
Immunity
26
,
105
-
116
.
Kueh
,
H. Y.
,
Yui
,
M. A.
,
Ng
,
K. K. H.
,
Pease
,
S. S.
,
Zhang
,
J. A.
,
Damle
,
S. S.
,
Freedman
,
G.
,
Siu
,
S.
,
Bernstein
,
I. D.
,
Elowitz
,
M. B.
, et al.
(
2016
).
Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment
.
Nat. Immunol.
17
,
956
-
965
.
Kuvardina
,
O. N.
,
Herglotz
,
J.
,
Kolodziej
,
S.
,
Kohrs
,
N.
,
Herkt
,
S.
,
Wojcik
,
B.
,
Oellerich
,
T.
,
Corso
,
J.
,
Behrens
,
K.
,
Kumar
,
A.
, et al.
(
2015
).
RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation
.
Blood
125
,
3570
-
3579
.
Lacaud
,
G.
,
Gore
,
L.
,
Kennedy
,
M.
,
Kouskoff
,
V.
,
Kingsley
,
P.
,
Hogan
,
C.
,
Carlsson
,
L.
,
Speck
,
N.
,
Palis
,
J.
and
Keller
,
G.
(
2002
).
Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro
.
Blood
100
,
458
-
466
.
Lacaud
,
G.
,
Kouskoff
,
V.
,
Trumble
,
A.
,
Schwantz
,
S.
and
Keller
,
G.
(
2004
).
Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells
.
Blood
103
,
886
-
889
.
Lallemend
,
F.
,
Sterzenbach
,
U.
,
Hadjab-Lallemend
,
S.
,
Aquino
,
J. B.
,
Castelo-Branco
,
G.
,
Sinha
,
I.
,
Villaescusa
,
J. C.
,
Levanon
,
D.
,
Wang
,
Y.
,
Franck
,
M. C. M.
, et al.
(
2012
).
Positional differences of axon growth rates between sensory neurons encoded by runx3
.
EMBO J.
31
,
3718
-
3729
.
Lam
,
E. Y. N.
,
Chau
,
J. Y. M.
,
Kalev-Zylinska
,
M. L.
,
Fountaine
,
T. M.
,
Mead
,
R. S.
,
Hall
,
C. J.
,
Crosier
,
P. S.
,
Crosier
,
K. E.
and
Flores
,
M. V.
(
2009
).
Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors
.
Blood
113
,
1241
-
1249
.
Lam
,
E. Y. N.
,
Hall
,
C. J.
,
Crosier
,
P. S.
,
Crosier
,
K. E.
and
Flores
,
M. V.
(
2010
).
Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells
.
Blood
116
,
909
-
914
.
Lancrin
,
C.
,
Sroczynska
,
P.
,
Stephenson
,
C.
,
Allen
,
T.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2009
).
The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage
.
Nature
457
,
892
-
895
.
Lancrin
,
C.
,
Mazan
,
M.
,
Stefanska
,
M.
,
Patel
,
R.
,
Lichtinger
,
M.
,
Costa
,
G.
,
Vargel
,
O.
,
Wilson
,
N. K.
,
Möröy
,
T.
,
Bonifer
,
C.
, et al.
(
2012
).
GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment
.
Blood
120
,
314
-
322
.
Lee
,
J.-M.
,
Shin
,
J.-O.
,
Cho
,
K.-W.
,
Hosoya
,
A.
,
Cho
,
S.-W.
,
Lee
,
Y.-S.
,
Ryoo
,
H.-M.
,
Bae
,
S.-C.
and
Jung
,
H.-S.
(
2011
).
Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice
.
Differentiation
81
,
261
-
268
.
Lee
,
J.
,
Hoi
,
C. S. L.
,
Lilja
,
K. C.
,
White
,
B. S.
,
Lee
,
S. E.
,
Shalloway
,
D.
and
Tumbar
,
T.
(
2013
).
Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo
.
Proc. Natl. Acad. Sci. USA
110
,
4634
-
4639
.
Lee
,
S. E.
,
Sada
,
A.
,
Zhang
,
M.
,
McDermitt
,
D. J.
,
Lu
,
S. Y.
,
Kemphues
,
K. J.
and
Tumbar
,
T.
(
2014
).
High Runx1 levels promote a reversible, more-differentiated cell state in hair-follicle stem cells during quiescence
.
Cell Rep.
6
,
499
-
513
.
Lee
,
J.-W.
,
Kim
,
D.-M.
,
Jang
,
J.-W.
,
Park
,
T.-G.
,
Song
,
S.-H.
,
Lee
,
Y.-S.
,
Chi
,
X.-Z.
,
Park
,
I. Y.
,
Hyun
,
J.-W.
,
Ito
,
Y.
, et al.
(
2019
).
RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restriction-point
.
Nat. Commun.
10
,
1897
.
Levanon
,
D.
and
Groner
,
Y.
(
2004
).
Structure and regulated expression of mammalian RUNX genes
.
Oncogene
23
,
4211
-
4219
.
Levanon
,
D.
,
Goldstein
,
R. E.
,
Bernstein
,
Y.
,
Tang
,
H.
,
Goldenberg
,
D.
,
Stifani
,
S.
,
Paroush
,
Z.
and
Groner
,
Y.
(
1998
).
Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors
.
Proc. Natl. Acad. Sci. USA
95
,
11590
-
11595
.
Levanon
,
D.
,
Glusman
,
G.
,
Bangsow
,
T.
,
Ben-Asher
,
E.
,
Male
,
D. A.
,
Avidan
,
N.
,
Bangsow
,
C.
,
Hattori
,
M.
,
Taylor
,
T. D.
,
Taudien
,
S.
, et al.
(
2001
).
Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1
.
Gene
262
,
23
-
33
.
Levanon
,
D.
,
Bettoun
,
D.
,
Harris-Cerruti
,
C.
,
Woolf
,
E.
,
Negreanu
,
V.
,
Eilam
,
R.
,
Bernstein
,
Y.
,
Goldenberg
,
D.
,
Xiao
,
C.
,
Fliegauf
,
M.
, et al.
(
2002
).
The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons
.
EMBO J.
21
,
3454
-
3463
.
Levanon
,
D.
,
Negreanu
,
V.
,
Lotem
,
J.
,
Bone
,
K. R.
,
Brenner
,
O.
,
Leshkowitz
,
D.
and
Groner
,
Y.
(
2014
).
Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation
.
Mol. Cell. Biol.
34
,
1158
-
1169
.
Li
,
Q.-L.
,
Ito
,
K.
,
Sakakura
,
C.
,
Fukamachi
,
H.
,
Inoue
,
K.-I.
,
Chi
,
X.-Z.
,
Lee
,
K.-Y.
,
Nomura
,
S.
,
Lee
,
C.-W.
,
Han
,
S.-B.
, et al.
(
2002
).
Causal relationship between the loss of RUNX3 expression and gastric cancer
.
Cell
109
,
113
-
124
.
Li
,
H.
,
Zhao
,
X.
,
Yan
,
X.
,
Jessen
,
W. J.
,
Kim
,
M.-O.
,
Dombi
,
E.
,
Liu
,
P. P.
,
Huang
,
G.
and
Wu
,
J.
(
2016
).
Runx1 contributes to neurofibromatosis type 1 neurofibroma formation
.
Oncogene
35
,
1468
-
1474
.
Liakhovitskaia
,
A.
,
Gribi
,
R.
,
Stamateris
,
E.
,
Villain
,
G.
,
Jaffredo
,
T.
,
Wilkie
,
R.
,
Gilchrist
,
D.
,
Yang
,
J.
,
Ure
,
J.
and
Medvinsky
,
A.
(
2009
).
Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth
.
Stem Cells
27
,
1616
-
1624
.
Liakhovitskaia
,
A.
,
Lana-Elola
,
E.
,
Stamateris
,
E.
,
Rice
,
D. P.
,
van't Hof
,
R. J.
and
Medvinsky
,
A.
(
2010
).
The essential requirement for Runx1 in the development of the sternum
.
Dev. Biol.
340
,
539
-
546
.
Liakhovitskaia
,
A.
,
Rybtsov
,
S.
,
Smith
,
T.
,
Batsivari
,
A.
,
Rybtsova
,
N.
,
Rode
,
C.
,
de Bruijn
,
M.
,
Buchholz
,
F.
,
Gordon-Keylock
,
S.
,
Zhao
,
S.
, et al.
(
2014
).
Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this
.
Development
141
,
3319
-
3323
.
Lichtinger
,
M.
,
Ingram
,
R.
,
Hannah
,
R.
,
Müller
,
D.
,
Clarke
,
D.
,
Assi
,
S. A.
,
Lie-A-Ling
,
M.
,
Noailles
,
L.
,
Vijayabaskar
,
M. S.
,
Wu
,
M.
, et al.
(
2012
).
RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis: RUNX1 shifts transcription factor binding patterns
.
EMBO J.
31
,
4318
-
4333
.
Lie-A-Ling
,
M.
,
Marinopoulou
,
E.
,
Li
,
Y.
,
Patel
,
R.
,
Stefanska
,
M.
,
Bonifer
,
C.
,
Miller
,
C.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2014
).
RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence
.
Blood
124
,
e11
-
e20
.
Lie-A-Ling
,
M.
,
Marinopoulou
,
E.
,
Lilly
,
A. J.
,
Challinor
,
M.
,
Patel
,
R.
,
Lancrin
,
C.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2018
).
Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium
.
Development
145
,
dev149419
.
Lilly
,
A. J.
,
Costa
,
G.
,
Largeot
,
A.
,
Fadlullah
,
M. Z. H.
,
Lie-A-Ling
,
M.
,
Lacaud
,
G.
and
Kouskoff
,
V.
(
2016
).
Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac
.
Development
143
,
4341
-
4351
.
Liu
,
W.
,
Toyosawa
,
S.
,
Furuichi
,
T.
,
Kanatani
,
N.
,
Yoshida
,
C.
,
Liu
,
Y.
,
Himeno
,
M.
,
Narai
,
S.
,
Yamaguchi
,
A.
and
Komori
,
T.
(
2001
).
Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures
.
J. Cell Biol.
155
,
157
-
166
.
Liu
,
Y.
,
Yang
,
F.-C.
,
Okuda
,
T.
,
Dong
,
X.
,
Zylka
,
M. J.
,
Chen
,
C.-L.
,
Anderson
,
D. J.
,
Kuner
,
R.
and
Ma
,
Q.
(
2008
).
Mechanisms of compartmentalized expression of Mrg class G-protein-coupled sensory receptors
.
J. Neurosci.
28
,
125
-
132
.
Liu
,
P.
,
Li
,
P.
and
Burke
,
S.
(
2010
).
Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity
.
Immunol. Rev.
238
,
138
-
149
.
Liu
,
J. C.
,
Lengner
,
C. J.
,
Gaur
,
T.
,
Lou
,
Y.
,
Hussain
,
S.
,
Jones
,
M. D.
,
Borodic
,
B.
,
Colby
,
J. L.
,
Steinman
,
H. A.
,
van Wijnen
,
A. J.
, et al.
(
2011
).
Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation
.
J. Biol. Chem.
286
,
30057
-
30070
.
Lorsbach
,
R. B.
,
Moore
,
J.
,
Ang
,
S. O.
,
Sun
,
W.
,
Lenny
,
N.
and
Downing
,
J. R.
(
2004
).
Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression
.
Blood
103
,
2522
-
2529
.
Lotem
,
J.
,
Levanon
,
D.
,
Negreanu
,
V.
,
Bauer
,
O.
,
Hantisteanu
,
S.
,
Dicken
,
J.
and
Groner
,
Y.
(
2017
).
Runx3 in immunity, inflammation and cancer
.
Adv. Exp. Med. Biol.
962
,
369
-
393
.
Lou
,
S.
,
Duan
,
B.
,
Vong
,
L.
,
Lowell
,
B. B.
and
Ma
,
Q.
(
2013
).
Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors
.
J. Neurosci.
33
,
870
-
882
.
Lou
,
S.
,
Pan
,
X.
,
Huang
,
T.
,
Duan
,
B.
,
Yang
,
F.-C.
,
Yang
,
J.
,
Xiong
,
M.
,
Liu
,
Y.
and
Ma
,
Q.
(
2015
).
Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors
.
J. Neurosci.
35
,
5317
-
5329
.
Luo
,
W.
,
Wickramasinghe
,
S. R.
,
Savitt
,
J. M.
,
Griffin
,
J. W.
,
Dawson
,
T. M.
and
Ginty
,
D. D.
(
2007
).
A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons
.
Neuron
54
,
739
-
754
.
Lutterbach
,
B.
,
Westendorf
,
J. J.
,
Linggi
,
B.
,
Isaac
,
S.
,
Seto
,
E.
and
Hiebert
,
S. W.
(
2000
).
A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia
.
J. Biol. Chem.
275
,
651
-
656
.
Lux
,
C. T.
,
Yoshimoto
,
M.
,
McGrath
,
K.
,
Conway
,
S. J.
,
Palis
,
J.
and
Yoder
,
M. C.
(
2008
).
All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac
.
Blood
111
,
3435
-
3438
.
Maier
,
H.
,
Ostraat
,
R.
,
Gao
,
H.
,
Fields
,
S.
,
Shinton
,
S. A.
,
Medina
,
K. L.
,
Ikawa
,
T.
,
Murre
,
C.
,
Singh
,
H.
,
Hardy
,
R. R.
, et al.
(
2004
).
Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription
.
Nat. Immunol.
5
,
1069
-
1077
.
Marks
,
S. C.
and
Odgren
,
P. R.
(
2002
).
Chapter 1 - structure and development of the skeleton
. In
Principles of Bone Biology
, 2nd edn. (ed.
J. P.
Bilezikian
,
L. G.
Raisz
and
G. A.
Rodan
), pp.
3
-
15
.
San Diego
:
Academic Press
.
Marmigère
,
F.
,
Montelius
,
A.
,
Wegner
,
M.
,
Groner
,
Y.
,
Reichardt
,
L. F.
and
Ernfors
,
P.
(
2006
).
The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons
.
Nat. Neurosci.
9
,
180
-
187
.
Martin
,
J. W.
,
Zielenska
,
M.
,
Stein
,
G. S.
,
van Wijnen
,
A. J.
and
Squire
,
J. A.
(
2011
).
The role of RUNX2 in osteosarcoma oncogenesis
.
Sarcoma
2011
,
282745
.
Martinez
,
M.
,
Hinojosa
,
M.
,
Trombly
,
D.
,
Morin
,
V.
,
Stein
,
J.
,
Stein
,
G.
,
Javed
,
A.
and
Gutierrez
,
S. E.
(
2016
).
Transcriptional auto-regulation of RUNX1 P1 promoter
.
PLoS ONE
11
,
e0149119
.
Maruyama
,
Z.
,
Yoshida
,
C. A.
,
Furuichi
,
T.
,
Amizuka
,
N.
,
Ito
,
M.
,
Fukuyama
,
R.
,
Miyazaki
,
T.
,
Kitaura
,
H.
,
Nakamura
,
K.
,
Fujita
,
T.
, et al.
(
2007
).
Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency
.
Dev. Dyn.
236
,
1876
-
1890
.
Masse
,
I.
,
Barbollat-Boutrand
,
L.
,
Molina
,
M.
,
Berthier-Vergnes
,
O.
,
Joly-Tonetti
,
N.
,
Martin
,
M. T.
,
Caron de Fromentel
,
C.
,
Kanitakis
,
J.
and
Lamartine
,
J.
(
2012
).
Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes
.
Cell Death Dis.
3
,
e318
.
McCarroll
,
C. S.
,
He
,
W.
,
Foote
,
K.
,
Bradley
,
A.
,
Mcglynn
,
K.
,
Vidler
,
F.
,
Nixon
,
C.
,
Nather
,
K.
,
Fattah
,
C.
,
Riddell
,
A.
, et al.
(
2018
).
Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction
.
Circulation
137
,
57
-
70
.
McDonald
,
L.
,
Ferrari
,
N.
,
Terry
,
A.
,
Bell
,
M.
,
Mohammed
,
Z. M.
,
Orange
,
C.
,
Jenkins
,
A.
,
Muller
,
W. J.
,
Gusterson
,
B. A.
,
Neil
,
J. C.
, et al.
(
2014
).
RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland
.
Dis Model Mech
7
,
525
-
534
.
McGrath
,
K. E.
,
Frame
,
J. M.
,
Fegan
,
K. H.
,
Bowen
,
J. R.
,
Conway
,
S. J.
,
Catherman
,
S. C.
,
Kingsley
,
P. D.
,
Koniski
,
A. D.
and
Palis
,
J.
(
2015
).
Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo
.
Cell Rep.
11
,
1892
-
1904
.
Medvinsky
,
A.
and
Dzierzak
,
E.
(
1996
).
Definitive hematopoiesis is autonomously initiated by the AGM region
.
Cell
86
,
897
-
906
.
Michaud
,
J.
,
Wu
,
F.
,
Osato
,
M.
,
Cottles
,
G. M.
,
Yanagida
,
M.
,
Asou
,
N.
,
Shigesada
,
K.
,
Ito
,
Y.
,
Benson
,
K. F.
,
Raskind
,
W. H.
, et al.
(
2002
).
In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis
.
Blood
99
,
1364
-
1372
.
Mikkola
,
H. K. A.
and
Orkin
,
S. H.
(
2006
).
The journey of developing hematopoietic stem cells
.
Development
133
,
3733
-
3744
.
Milner
,
J. J.
,
Toma
,
C.
,
Yu
,
B.
,
Zhang
,
K.
,
Omilusik
,
K.
,
Phan
,
A. T.
,
Wang
,
D.
,
Getzler
,
A. J.
,
Nguyen
,
T.
,
Crotty
,
S.
, et al.
(
2017
).
Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours
.
Nature
552
,
253
-
257
.
Miyamoto
,
C.
,
Kojo
,
S.
,
Yamashita
,
M.
,
Moro
,
K.
,
Lacaud
,
G.
,
Shiroguchi
,
K.
,
Taniuchi
,
I.
and
Ebihara
,
T.
(
2019
).
Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation
.
Nat. Commun.
10
,
447
.
Miyoshi
,
H.
,
Shimizu
,
K.
,
Kozu
,
T.
,
Maseki
,
N.
,
Kaneko
,
Y.
and
Ohki
,
M.
(
1991
).
t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1
.
Proc. Natl. Acad. Sci. USA
88
,
10431
-
10434
.
Miyoshi
,
H.
,
Ohira
,
M.
,
Shimizu
,
K.
,
Mitani
,
K.
,
Hirai
,
H.
,
Imai
,
T.
,
Yokoyama
,
K.
,
Soceda
,
E.
and
Ohki
,
M.
(
1995
).
Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia
.
Nucleic Acids Res.
23
,
2762
-
2769
.
Morita
,
K.
,
Suzuki
,
K.
,
Maeda
,
S.
,
Matsuo
,
A.
,
Mitsuda
,
Y.
,
Tokushige
,
C.
,
Kashiwazaki
,
G.
,
Taniguchi
,
J.
,
Maeda
,
R.
,
Noura
,
M.
, et al.
(
2017
).
Genetic regulation of the RUNX transcription factor family has antitumor effects
.
J. Clin. Invest.
127
,
2815
-
2828
.
Motoda
,
L.
,
Osato
,
M.
,
Yamashita
,
N.
,
Jacob
,
B.
,
Chen
,
L. Q.
,
Yanagida
,
M.
,
Ida
,
H.
,
Wee
,
H.-J.
,
Sun
,
A. X.
,
Taniuchi
,
I.
, et al.
(
2007
).
Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult
.
Stem Cells
25
,
2976
-
2986
.
Mukai
,
K.
,
BenBarak
,
M. J.
,
Tachibana
,
M.
,
Nishida
,
K.
,
Karasuyama
,
H.
,
Taniuchi
,
I.
and
Galli
,
S. J.
(
2012
).
Critical role of P1-Runx1 in mouse basophil development
.
Blood
120
,
76
-
85
.
Murthy
,
M.
,
Bocking
,
S.
,
Verginelli
,
F.
and
Stifani
,
S.
(
2014
).
Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells
.
Gene
540
,
191
-
200
.
Nagata
,
T.
,
Gupta
,
V.
,
Sorce
,
D.
,
Kim
,
W.-Y.
,
Sali
,
A.
,
Chait
,
B. T.
,
Shigesada
,
K.
,
Ito
,
Y.
and
Werner
,
M. H.
(
1999
).
Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain
.
Nat. Struct. Biol.
6
,
615
-
619
.
Nakamura
,
S.
,
Senzaki
,
K.
,
Yoshikawa
,
M.
,
Nishimura
,
M.
,
Inoue
,
K.-I.
,
Ito
,
Y.
,
Ozaki
,
S.
and
Shiga
,
T.
(
2008
).
Dynamic regulation of the expression of neurotrophin receptors by Runx3
.
Development
135
,
1703
-
1711
.
Naoe
,
Y.
,
Setoguchi
,
R.
,
Akiyama
,
K.
,
Muroi
,
S.
,
Kuroda
,
M.
,
Hatam
,
F.
,
Littman
,
D. R.
and
Taniuchi
,
I.
(
2007
).
Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer
.
J. Exp. Med.
204
,
1749
-
1755
.
North
,
T.
,
Gu
,
T. L.
,
Stacy
,
T.
,
Wang
,
Q.
,
Howard
,
L.
,
Binder
,
M.
,
Marín-Padilla
,
M.
and
Speck
,
N. A.
(
1999
).
Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
.
Development
126
,
2563
-
2575
.
North
,
T. E.
,
de Bruijn
,
M. F. T. R.
,
Stacy
,
T.
,
Talebian
,
L.
,
Lind
,
E.
,
Robin
,
C.
,
Binder
,
M.
,
Dzierzak
,
E.
and
Speck
,
N. A.
(
2002
).
Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo
.
Immunity
16
,
661
-
672
.
North
,
T. E.
,
Stacy
,
T.
,
Matheny
,
C. J.
,
Speck
,
N. A.
and
de Bruijn
,
M. F. T. R.
(
2004
).
Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells
.
Stem Cells
22
,
158
-
168
.
Nüsslein-Volhard
,
C.
and
Wieschaus
,
E.
(
1980
).
Mutations affecting segment number and polarity in Drosophila
.
Nature
287
,
795
-
801
.
Ogawa
,
E.
,
Inuzuka
,
M.
,
Maruyama
,
M.
,
Satake
,
M.
,
Naito-Fujimoto
,
M.
,
Ito
,
Y.
and
Shigesada
,
K.
(
1993
).
Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha
.
Virology
194
,
314
-
331
.
Okuda
,
T.
,
van Deursen
,
J.
,
Hiebert
,
S. W.
,
Grosveld
,
G.
and
Downing
,
J. R.
(
1996
).
AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis
.
Cell
84
,
321
-
330
.
Ono
,
M.
,
Yaguchi
,
H.
,
Ohkura
,
N.
,
Kitabayashi
,
I.
,
Nagamura
,
Y.
,
Nomura
,
T.
,
Miyachi
,
Y.
,
Tsukada
,
T.
and
Sakaguchi
,
S.
(
2007
).
Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1
.
Nature
446
,
685
-
689
.
Osorio
,
K. M.
,
Lee
,
S. E.
,
McDermitt
,
D. J.
,
Waghmare
,
S. K.
,
Zhang
,
Y. V.
,
Woo
,
H. N.
and
Tumbar
,
T.
(
2008
).
Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation
.
Development
135
,
1059
-
1068
.
Osorio
,
K. M.
,
Lilja
,
K. C.
and
Tumbar
,
T.
(
2011
).
Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments
.
J. Cell Biol.
193
,
235
-
250
.
Otto
,
F.
,
Thornell
,
A. P.
,
Crompton
,
T.
,
Denzel
,
A.
,
Gilmour
,
K. C.
,
Rosewell
,
I. R.
,
Stamp
,
G. W. H.
,
Beddington
,
R. S. P.
,
Mundlos
,
S.
,
Olsen
,
B. R.
, et al.
(
1997
).
Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development
.
Cell
89
,
765
-
771
.
Owens
,
T. W.
,
Rogers
,
R. L.
,
Best
,
S. A.
,
Ledger
,
A.
,
Mooney
,
A.-M.
,
Ferguson
,
A.
,
Shore
,
P.
,
Swarbrick
,
A.
,
Ormandy
,
C. J.
,
Simpson
,
P. T.
, et al.
(
2014
).
Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer
.
Cancer Res.
74
,
5277
-
5286
.
Palis
,
J.
,
Robertson
,
S.
,
Kennedy
,
M.
,
Wall
,
C.
and
Keller
,
G.
(
1999
).
Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse
.
Development
126
,
5073
-
5084
.
Pelletier
,
N.
,
Champagne
,
N.
,
Stifani
,
S.
and
Yang
,
X.-J.
(
2002
).
MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2
.
Oncogene
21
,
2729
-
2740
.
Pencovich
,
N.
,
Jaschek
,
R.
,
Tanay
,
A.
and
Groner
,
Y.
(
2011
).
Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models
.
Blood
117
,
e1
-
e14
.
Pencovich
,
N.
,
Jaschek
,
R.
,
Dicken
,
J.
,
Amit
,
A.
,
Lotem
,
J.
,
Tanay
,
A.
and
Groner
,
Y.
(
2013
).
Cell-autonomous function of Runx1 transcriptionally regulates mouse megakaryocytic maturation
.
PLoS ONE
8
,
e64248
.
Perry
,
S. S.
,
Wang
,
H.
,
Pierce
,
L. J.
,
Yang
,
A. M.
,
Tsai
,
S.
and
Spangrude
,
G. J.
(
2004
).
L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor
.
Blood
103
,
2990
-
2996
.
Petrie
,
H. T.
(
2007
).
Early commitment: T cell progenitors in the blood
.
Immunity
26
,
7
-
8
.
Pimanda
,
J. E.
,
Donaldson
,
I. J.
,
de Bruijn
,
M. F. T. R.
,
Kinston
,
S.
,
Knezevic
,
K.
,
Huckle
,
L.
,
Piltz
,
S.
,
Landry
,
J.-R.
,
Green
,
A. R.
,
Tannahill
,
D.
, et al.
(
2007
).
The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity
.
Proc. Natl Acad. Sci. USA
104
,
840
-
845
.
Pozner
,
A.
,
Goldenberg
,
D.
,
Negreanu
,
V.
,
Le
,
S.-Y.
,
Elroy-Stein
,
O.
,
Levanon
,
D.
and
Groner
,
Y.
(
2000
).
Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms
.
Mol. Cell. Biol.
20
,
2297
-
2307
.
Pozner
,
A.
,
Lotem
,
J.
,
Xiao
,
C.
,
Goldenberg
,
D.
,
Brenner
,
O.
,
Negreanu
,
V.
,
Levanon
,
D.
and
Groner
,
Y.
(
2007
).
Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis
.
BMC Dev. Biol.
7
,
84
.
Pratap
,
J.
,
Lian
,
J. B.
,
Javed
,
A.
,
Barnes
,
G. L.
,
van Wijnen
,
A. J.
,
Stein
,
J. L.
and
Stein
,
G. S.
(
2006
).
Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone
.
Cancer Metastasis Rev.
25
,
589
-
600
.
Puig-Kröger
,
A.
,
Aguilera-Montilla
,
N.
,
Martínez-Nuñez
,
R.
,
Domínguez-Soto
,
A.
,
Sánchez-Cabo
,
F.
,
Martín-Gayo
,
E.
,
Zaballos
,
A.
,
Toribio
,
M. L.
,
Groner
,
Y.
,
Ito
,
Y.
, et al.
(
2010
).
The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression
.
Immunobiology
215
,
812
-
820
.
Putz
,
G.
,
Rosner
,
A.
,
Nuesslein
,
I.
,
Schmitz
,
N.
and
Buchholz
,
F.
(
2006
).
AML1 deletion in adult mice causes splenomegaly and lymphomas
.
Oncogene
25
,
929
-
939
.
Qu
,
J.
,
Tanis
,
S. E. J.
,
Smits
,
J. P. H.
,
Kouwenhoven
,
E. N.
,
Oti
,
M.
,
van den Bogaard
,
E. H.
,
Logie
,
C.
,
Stunnenberg
,
H. G.
,
van Bokhoven
,
H.
,
Mulder
,
K. W.
, et al.
(
2018
).
Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape
.
Cell Rep
25
,
3490
-
3503.e4
.
Ran
,
D.
,
Shia
,
W.-J.
,
Lo
,
M.-C.
,
Fan
,
J.-B.
,
Knorr
,
D. A.
,
Ferrell
,
P. I.
,
Ye
,
Z.
,
Yan
,
M.
,
Cheng
,
L.
,
Kaufman
,
D. S.
, et al.
(
2013
).
RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells
.
Blood
121
,
2882
-
2890
.
Raveh
,
E.
,
Cohen
,
S.
,
Levanon
,
D.
,
Groner
,
Y.
and
Gat
,
U.
(
2005
).
Runx3 is involved in hair shape determination
.
Dev. Dyn.
233
,
1478
-
1487
.
Raveh
,
E.
,
Cohen
,
S.
,
Levanon
,
D.
,
Negreanu
,
V.
,
Groner
,
Y.
and
Gat
,
U.
(
2006
).
Dynamic expression of Runx1 in skin affects hair structure
.
Mech. Dev.
123
,
842
-
850
.
Reis
,
B. S.
,
Rogoz
,
A.
,
Costa-Pinto
,
F. A.
,
Taniuchi
,
I.
and
Mucida
,
D.
(
2013
).
Mutual expression of Runx3 and ThPOK regulates intestinal CD4+ T cell immunity
.
Nat. Immunol.
14
,
271
-
280
.
Rennert
,
J.
,
Coffman
,
J. A.
,
Mushegian
,
A. R.
and
Robertson
,
A. J.
(
2003
).
The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms
.
BMC Evol. Biol.
11
.
Riggio
,
A. I.
and
Blyth
,
K.
(
2017
).
The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives
.
FEBS J.
284
,
2345
-
2362
.
Rini
,
D.
and
Calabi
,
F.
(
2001
).
Identification and comparative analysis of a second runx3 promoter
.
Gene
273
,
13
-
22
.
Rudra
,
D.
,
Egawa
,
T.
,
Chong
,
M. M. W.
,
Treuting
,
P.
,
Littman
,
D. R.
and
Rudensky
,
A. Y.
(
2009
).
Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells
.
Nat. Immunol.
10
,
1170
-
1177
.
Sato
,
T.
,
Ito
,
R.
,
Nunomura
,
S.
,
Ohno
,
S.-I.
,
Hayashi
,
K.
,
Satake
,
M.
and
Habu
,
S.
(
2003
).
Requirement of transcription factor AML1 in proliferation of developing thymocytes
.
Immunol. Lett.
89
,
39
-
46
.
Sawada
,
S.
,
Scarborough
,
J. D.
,
Killeen
,
N.
and
Littman
,
D. R.
(
1994
).
A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development
.
Cell
77
,
917
-
929
.
Scheitz
,
C. J. F.
,
Lee
,
T. S.
,
McDermitt
,
D. J.
and
Tumbar
,
T.
(
2012
).
Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer
.
EMBO J.
31
,
4124
-
4139
.
Seo
,
W.
,
Ikawa
,
T.
,
Kawamoto
,
H.
and
Taniuchi
,
I.
(
2012a
).
Runx1–Cbfβ facilitates early B lymphocyte development by regulating expression of Ebf1
.
J. Exp. Med.
209
,
1255
-
1262
.
Seo
,
W.
,
Tanaka
,
H.
,
Miyamoto
,
C.
,
Levanon
,
D.
,
Groner
,
Y.
and
Taniuchi
,
I.
(
2012b
).
Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development
.
Immunol. Cell Biol.
90
,
827
-
830
.
Setoguchi
,
R.
,
Tachibana
,
M.
,
Naoe
,
Y.
,
Muroi
,
S.
,
Akiyama
,
K.
,
Tezuka
,
C.
,
Okuda
,
T.
and
Taniuchi
,
I.
(
2008
).
Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development
.
Science
319
,
822
-
825
.
Shi
,
M. J.
and
Stavnezer
,
J.
(
1998
).
CBF alpha3 (AML2) is induced by TGF-beta1 to bind and activate the mouse germline Ig alpha promoter
.
J. Immunol.
161
,
6751
-
6760
.
Siu
,
G.
,
Wurster
,
A. L.
,
Duncan
,
D. D.
,
Soliman
,
T. M.
and
Hedrick
,
S. M.
(
1994
).
A transcriptional silencer controls the developmental expression of the CD4 gene
.
EMBO J.
13
,
3570
-
3579
.
Sokol
,
E. S.
,
Sanduja
,
S.
,
Jin
,
D. X.
,
Miller
,
D. H.
,
Mathis
,
R. A.
and
Gupta
,
P. B.
(
2015
).
Perturbation-Expression Analysis Identifies RUNX1 as a Regulator of Human Mammary Stem Cell Differentiation
.
PLoS Comput. Biol.
11
,
e1004161
.
Sood
,
R.
,
Kamikubo
,
Y.
and
Liu
,
P.
(
2017
).
Role of RUNX1 in hematological malignancies
.
Blood
129
,
2070
-
2082
.
Spender
,
L. C.
,
Whiteman
,
H. J.
,
Karstegl
,
C. E.
and
Farrell
,
P. J.
(
2005
).
Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells
.
Oncogene
24
,
1873
-
1881
.
Sroczynska
,
P.
,
Lancrin
,
C.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2009
).
The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis
.
Blood
114
,
5279
-
5289
.
Stefanska
,
M.
,
Batta
,
K.
,
Patel
,
R.
,
Florkowska
,
M.
,
Kouskoff
,
V.
and
Lacaud
,
G.
(
2017
).
Primitive erythrocytes are generated from hemogenic endothelial cells
.
Sci. Rep.
7
,
6401
.
Steinke
,
F. C.
,
Yu
,
S.
,
Zhou
,
X.
,
He
,
B.
,
Yang
,
W.
,
Zhou
,
B.
,
Kawamoto
,
H.
,
Zhu
,
J.
,
Tan
,
K.
and
Xue
,
H.-H.
(
2014
).
TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells
.
Nat. Immunol.
15
,
646
-
656
.
Stifani
,
N.
,
Freitas
,
A. R. O.
,
Liakhovitskaia
,
A.
,
Medvinsky
,
A.
,
Kania
,
A.
and
Stifani
,
S.
(
2008
).
Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1
.
Proc. Natl. Acad. Sci. USA
105
,
6451
-
6456
.
Swiers
,
G.
,
Baumann
,
C.
,
O'Rourke
,
J.
,
Giannoulatou
,
E.
,
Taylor
,
S.
,
Joshi
,
A.
,
Moignard
,
V.
,
Pina
,
C.
,
Bee
,
T.
,
Kokkaliaris
,
K. D.
, et al.
(
2013
).
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level
.
Nat. Commun.
4
,
2924
.
Tachibana
,
M.
,
Tenno
,
M.
,
Tezuka
,
C.
,
Sugiyama
,
M.
,
Yoshida
,
H.
and
Taniuchi
,
I.
(
2011
).
Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages
.
J. Immunol.
186
,
1450
-
1457
.
Takarada
,
T.
,
Hinoi
,
E.
,
Nakazato
,
R.
,
Ochi
,
H.
,
Xu
,
C.
,
Tsuchikane
,
A.
,
Takeda
,
S.
,
Karsenty
,
G.
,
Abe
,
T.
,
Kiyonari
,
H.
, et al.
(
2013
).
An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice
.
J. Bone Miner. Res.
28
,
2064
-
2069
.
Takeda
,
S.
,
Bonnamy
,
J.-P.
,
Owen
,
M. J.
,
Ducy
,
P.
and
Karsenty
,
G.
(
2001
).
Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice
.
Genes Dev.
15
,
467
-
481
.
Tang
,
Y.-Y.
,
Crute
,
B. E.
,
Kelley
,
J. J.
,
Huang
,
X.
,
Yan
,
J.
,
Shi
,
J.
,
Hartman
,
K. L.
,
Laue
,
T. M.
,
Speck
,
N. A.
and
Bushweller
,
J. H.
(
2000
).
Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA
.
FEBS Lett.
470
,
167
-
172
.
Taniuchi
,
I.
,
Osato
,
M.
,
Egawa
,
T.
,
Sunshine
,
M. J.
,
Bae
,
S.-C.
,
Komori
,
T.
,
Ito
,
Y.
and
Littman
,
D. R.
(
2002
).
Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development
.
Cell
111
,
621
-
633
.
Tay
,
L. S.
,
Krishnan
,
V.
,
Sankar
,
H.
,
Chong
,
Y. L.
,
Chuang
,
L. S. H.
,
Tan
,
T. Z.
,
Kolinjivadi
,
A. M.
,
Kappei
,
D.
and
Ito
,
Y.
(
2018
).
RUNX poly(ADP-Ribosyl)ation and BLM interaction facilitate the fanconi anemia pathway of DNA repair
.
Cell Rep.
24
,
1747
-
1755
.
Telfer
,
J. C.
and
Rothenberg
,
E. V.
(
2001
).
Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development
.
Dev. Biol.
229
,
363
-
382
.
Telfer
,
J. C.
,
Hedblom
,
E. E.
,
Anderson
,
M. K.
,
Laurent
,
M. N.
and
Rothenberg
,
E. V.
(
2004
).
Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes
.
J. Immunol.
172
,
4359
-
4370
.
Terry
,
A.
,
Kilbey
,
A.
,
Vaillant
,
F.
,
Stewart
,
M.
,
Jenkins
,
A.
,
Cameron
,
E.
and
Neil
,
J. C.
(
2004
).
Conservation and expression of an alternative 3′ exon of Runx2 encoding a novel proline-rich C-terminal domain
.
Gene
336
,
115
-
125
.
Thambyrajah
,
R.
,
Mazan
,
M.
,
Patel
,
R.
,
Moignard
,
V.
,
Stefanska
,
M.
,
Marinopoulou
,
E.
,
Li
,
Y.
,
Lancrin
,
C.
,
Clapes
,
T.
,
Möröy
,
T.
, et al.
(
2016a
).
GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1
.
Nat. Cell Biol.
18
,
21
-
32
.
Thambyrajah
,
R.
,
Patel
,
R.
,
Mazan
,
M.
,
Lie-a-Ling
,
M.
,
Lilly
,
A.
,
Eliades
,
A.
,
Menegatti
,
S.
,
Garcia-Alegria
,
E.
,
Florkowska
,
M.
,
Batta
,
K.
, et al.
(
2016b
).
New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells
.
Cell Cycle
15
,
2108
-
2114
.
Theriault
,
F. M.
,
Roy
,
P.
and
Stifani
,
S.
(
2004
).
AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons
.
Proc. Natl. Acad. Sci. USA
101
,
10343
-
10348
.
Theriault
,
F. M.
,
Nuthall
,
H. N.
,
Dong
,
Z.
,
Lo
,
R.
,
Barnabe-Heider
,
F.
,
Miller
,
F. D.
and
Stifani
,
S.
(
2005
).
Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system
.
J. Neurosci.
25
,
2050
-
2061
.
Tober
,
J.
,
Yzaguirre
,
A. D.
,
Piwarzyk
,
E.
and
Speck
,
N. A.
(
2013
).
Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells
.
Development
140
,
3765
-
3776
.
Tober
,
J.
,
Maijenburg
,
M. W.
and
Speck
,
N. A.
(
2016
).
Taking the leap: Runx1 in the formation of blood from endothelium
.
Curr. Top. Dev. Biol.
118
,
113
-
162
.
Tsuzuki
,
S.
and
Seto
,
M.
(
2012
).
Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1
.
Blood
119
,
727
-
735
.
Tsuzuki
,
S.
,
Hong
,
D.
,
Gupta
,
R.
,
Matsuo
,
K.
,
Seto
,
M.
and
Enver
,
T.
(
2007
).
Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1
.
PLoS Med.
4
,
e172
.
Ueta
,
C.
,
Iwamoto
,
M.
,
Kanatani
,
N.
,
Yoshida
,
C.
,
Liu
,
Y.
,
Enomoto-Iwamoto
,
M.
,
Ohmori
,
T.
,
Enomoto
,
H.
,
Nakata
,
K.
,
Takada
,
K.
, et al.
(
2001
).
Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes
.
J. Cell Biol.
153
,
87
-
100
.
Ugarte
,
G. D.
,
Diaz
,
E.
,
Biscaia
,
M.
,
Stehberg
,
J.
,
Montecino
,
M.
and
van Zundert
,
B.
(
2013
).
Transcription of the pain-related TRPV1 gene requires Runx1 and C/EBPβ factors
.
J. Cell. Physiol.
228
,
860
-
870
.
Umansky
,
K. B.
,
Gruenbaum-Cohen
,
Y.
,
Tsoory
,
M.
,
Feldmesser
,
E.
,
Goldenberg
,
D.
,
Brenner
,
O.
and
Groner
,
Y.
(
2015
).
Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration
.
PLoS Genet.
11
,
e1005457
.
van Bragt
,
M. P. A.
,
Hu
,
X.
,
Xie
,
Y.
and
Li
,
Z.
(
2014
).
RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells
.
eLife
3
,
e03881
.
Voon
,
D. C.-C.
,
Hor
,
Y. T.
and
Ito
,
Y.
(
2015
).
The RUNX complex: reaching beyond haematopoiesis into immunity
.
Immunology
146
,
523
-
536
.
Voronov
,
D.
,
Gromova
,
A.
,
Liu
,
D.
,
Zoukhri
,
D.
,
Medvinsky
,
A.
,
Meech
,
R.
and
Makarenkova
,
H. P.
(
2013
).
Transcription factors Runx1 to 3 are expressed in the lacrimal gland epithelium and are involved in regulation of gland morphogenesis and regeneration
.
Invest. Ophthalmol. Vis. Sci.
54
,
3115
-
3125
.
Vu
,
L. P.
,
Perna
,
F.
,
Wang
,
L.
,
Voza
,
F.
,
Figueroa
,
M. E.
,
Tempst
,
P.
,
Erdjument-Bromage
,
H.
,
Gao
,
R.
,
Chen
,
S.
,
Paietta
,
E.
, et al.
(
2013
).
PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex
.
Cell Rep.
5
,
1625
-
1638
.
Wang
,
S. W.
and
Speck
,
N. A.
(
1992
).
Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers
.
Mol. Cell. Biol.
12
,
89
-
102
.
Wang
,
S.
,
Wang
,
Q.
,
Crute
,
B. E.
,
Melnikova
,
I. N.
,
Keller
,
S. R.
and
Speck
,
N. A.
(
1993
).
Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor
.
Mol. Cell. Biol.
13
,
3324
-
3339
.
Wang
,
Q.
,
Stacy
,
T.
,
Binder
,
M.
,
Marin-Padilla
,
M.
,
Sharpe
,
A. H.
and
Speck
,
N. A.
(
1996
).
Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis
.
Proc. Natl. Acad. Sci. USA
93
,
3444
-
3449
.
Wang
,
X.-P.
,
Åberg
,
T.
,
James
,
M. J.
,
Levanon
,
D.
,
Groner
,
Y.
and
Thesleff
,
I.
(
2005a
).
Runx2 (Cbfa1) inhibits Shh signaling in the lower but not upper molars of mouse embryos and prevents the budding of putative successional teeth
.
J. Dent. Res.
84
,
138
-
143
.
Wang
,
X.
,
Blagden
,
C.
,
Fan
,
J.
,
Nowak
,
S. J.
,
Taniuchi
,
I.
,
Littman
,
D. R.
and
Burden
,
S. J.
(
2005b
).
Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle
.
Genes Dev.
19
,
1715
-
1722
.
Wang
,
Y. J.
,
Belflower
,
R. M.
,
Dong
,
Y.-F.
,
Schwarz
,
E. M.
,
O'Keefe
,
R. J.
and
Drissi
,
H.
(
2005c
).
Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis
.
J. Bone Miner. Res.
20
,
1624
-
1636
.
Wang
,
L.
,
Gural
,
A.
,
Sun
,
X.-J.
,
Zhao
,
X.
,
Perna
,
F.
,
Huang
,
G.
,
Hatlen
,
M. A.
,
Vu
,
L.
,
Liu
,
F.
,
Xu
,
H.
, et al.
(
2011a
).
The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation
.
Science
333
,
765
-
769
.
Wang
,
L.
,
Brugge
,
J. S.
and
Janes
,
K. A.
(
2011b
).
Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression
.
Proc. Natl Acad. Sci. USA
108
,
E803
-
E812
.
Wang
,
C. Q.
,
Motoda
,
L.
,
Satake
,
M.
,
Ito
,
Y.
,
Taniuchi
,
I.
,
Tergaonkar
,
V.
and
Osato
,
M.
(
2013
).
Runx3 deficiency results in myeloproliferative disorder in aged mice
.
Blood
122
,
562
-
566
.
Wang
,
Y.
,
Godec
,
J.
,
Ben-Aissa
,
K.
,
Cui
,
K.
,
Zhao
,
K.
,
Pucsek
,
A. B.
,
Lee
,
Y. K.
,
Weaver
,
C. T.
,
Yagi
,
R.
and
Lazarevic
,
V.
(
2014a
).
The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells
.
Immunity
40
,
355
-
366
.
Wang
,
C. Q.
,
Krishnan
,
V.
,
Tay
,
L. S.
,
Chin
,
D. W. L.
,
Koh
,
C. P.
,
Chooi
,
J. Y.
,
Nah
,
G. S. S.
,
Du
,
L.
,
Jacob
,
B.
,
Yamashita
,
N.
, et al.
(
2014b
).
Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects
.
Cell Rep.
8
,
767
-
782
.
Wang
,
D.
,
Diao
,
H.
,
Getzler
,
A. J.
,
Rogal
,
W.
,
Frederick
,
M. A.
,
Milner
,
J.
,
Yu
,
B.
,
Crotty
,
S.
,
Goldrath
,
A. W.
and
Pipkin
,
M. E.
(
2018
).
The transcription factor runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation
.
Immunity
48
,
659
-
674.e6
.
Watanabe
,
K.
,
Sugai
,
M.
,
Nambu
,
Y.
,
Osato
,
M.
,
Hayashi
,
T.
,
Kawaguchi
,
M.
,
Komori
,
T.
,
Ito
,
Y.
and
Shimizu
,
A.
(
2010
).
Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling
.
J. Immunol.
184
,
2785
-
2792
.
Wee
,
H.-J.
,
Voon
,
D. C.-C.
,
Bae
,
S.-C.
and
Ito
,
Y.
(
2008
).
PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis
.
Blood
112
,
3777
-
3787
.
Wei
,
J.
,
Shimazu
,
J.
,
Makinistoglu
,
M. P.
,
Maurizi
,
A.
,
Kajimura
,
D.
,
Zong
,
H.
,
Takarada
,
T.
,
Iezaki
,
T.
,
Pessin
,
J. E.
,
Hinoi
,
E.
, et al.
(
2015
).
Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation
.
Cell
161
,
1576
-
1591
.
Woolf
,
E.
,
Xiao
,
C.
,
Fainaru
,
O.
,
Lotem
,
J.
,
Rosen
,
D.
,
Negreanu
,
V.
,
Bernstein
,
Y.
,
Goldenberg
,
D.
,
Brenner
,
O.
,
Berke
,
G.
, et al.
(
2003
).
Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis
.
Proc. Natl. Acad. Sci. U.S.A.
100
,
7731
-
7736
.
Woolf
,
E.
,
Brenner
,
O.
,
Goldenberg
,
D.
,
Levanon
,
D.
and
Groner
,
Y.
(
2007
).
Runx3 regulates dendritic epidermal T cell development
.
Dev. Biol.
303
,
703
-
714
.
Xiao
,
Z. S.
,
Thomas
,
R.
,
Hinson
,
T. K.
and
Quarles
,
L. D.
(
1998
).
Genomic structure and isoform expression of the mouse, rat and human Cbfa1/Osf2 transcription factor
.
Gene
214
,
187
-
197
.
Yamashiro
,
T.
,
Åberg
,
T.
,
Levanon
,
D.
,
Groner
,
Y.
and
Thesleff
,
I.
(
2002
).
Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development
.
Mech. Dev.
119
Suppl. 1
,
S107
-
S110
.
Yan
,
J.
,
Liu
,
Y.
,
Lukasik
,
S. M.
,
Speck
,
N. A.
and
Bushweller
,
J. H.
(
2004
).
CBFβ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium
.
Nat. Struct. Mol. Biol.
11
,
901
.
Yang
,
F.-C.
,
Tan
,
T.
,
Huang
,
T.
,
Christianson
,
J.
,
Samad
,
O. A.
,
Liu
,
Y.
,
Roberson
,
D.
,
Davis
,
B. M.
and
Ma
,
Q.
(
2013
).
Genetic control of the segregation of pain-related sensory neurons innervating the cutaneous versus deep tissues
.
Cell Rep.
5
,
1353
-
1364
.
Yarmus
,
M.
,
Woolf
,
E.
,
Bernstein
,
Y.
,
Fainaru
,
O.
,
Negreanu
,
V.
,
Levanon
,
D.
and
Groner
,
Y.
(
2006
).
Groucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent transcriptional regulation by Runx3
.
Proc. Natl. Acad. Sci. USA
103
,
7384
-
7389
.
Yin
,
S.
,
Yu
,
J.
,
Hu
,
B.
,
Lu
,
C.
,
Liu
,
X.
,
Gao
,
X.
,
Li
,
W.
,
Zhou
,
L.
,
Wang
,
J.
,
Wang
,
D.
, et al.
(
2018
).
Runx3 mediates resistance to intracellular bacterial infection by promoting IL12 signaling in group 1 ILC and NCR+ILC3
.
Front. Immunol.
9
,
2101
.
Yoshida
,
C. A.
(
2004
).
Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog
.
Genes Dev.
18
,
952
-
963
.
Yoshikawa
,
M.
,
Senzaki
,
K.
,
Yokomizo
,
T.
,
Takahashi
,
S.
,
Ozaki
,
S.
and
Shiga
,
T.
(
2007
).
Runx1 selectively regulates cell fate specification and axonal projections of dorsal root ganglion neurons
.
Dev. Biol.
303
,
663
-
674
.
Yoshikawa
,
M.
,
Hirabayashi
,
M.
,
Ito
,
R.
,
Ozaki
,
S.
,
Aizawa
,
S.
,
Masuda
,
T.
,
Senzaki
,
K.
and
Shiga
,
T.
(
2015
).
Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons
.
Dev. Neurobiol.
75
,
1295
-
1314
.
Yoshimoto
,
M.
,
Montecino-Rodriguez
,
E.
,
Ferkowicz
,
M. J.
,
Porayette
,
P.
,
Shelley
,
W. C.
,
Conway
,
S. J.
,
Dorshkind
,
K.
and
Yoder
,
M. C.
(
2011
).
Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential
.
Proc. Natl. Acad. Sci. USA
108
,
1468
-
1473
.
Yoshimoto
,
M.
,
Porayette
,
P.
,
Glosson
,
N. L.
,
Conway
,
S. J.
,
Carlesso
,
N.
,
Cardoso
,
A. A.
,
Kaplan
,
M. H.
and
Yoder
,
M. C.
(
2012
).
Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence
.
Blood
119
,
5706
-
5714
.
Zaidi
,
S. K.
,
Javed
,
A.
,
Choi
,
J. Y.
,
van Wijnen
,
A. J.
,
Stein
,
J. L.
,
Lian
,
J. B.
and
Stein
,
G. S.
(
2001
).
A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene
.
J. Cell. Sci.
114
,
3093
-
3102
.
Zambidis
,
E. T.
,
Peault
,
B.
,
Park
,
T. S.
,
Bunz
,
F.
and
Civin
,
C. I.
(
2005
).
Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development
.
Blood
106
,
860
-
870
.
Zaret
,
K. S.
and
Carroll
,
J. S.
(
2011
).
Pioneer transcription factors: establishing competence for gene expression
.
Genes Dev.
25
,
2227
-
2241
.
Zeigler
,
B. M.
,
Sugiyama
,
D.
,
Chen
,
M.
,
Guo
,
Y.
,
Downs
,
K. M.
and
Speck
,
N. A.
(
2006
).
The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential
.
Development
133
,
4183
-
4192
.
Zelzer
,
E.
,
Glotzer
,
D. J.
,
Hartmann
,
C.
,
Thomas
,
D.
,
Fukai
,
N.
,
Soker
,
S.
and
Olsen
,
B. R.
(
2001
).
Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2
.
Mech. Dev.
106
,
97
-
106
.
Zeng
,
C.
,
McNeil
,
S.
,
Pockwinse
,
S.
,
Nickerson
,
J.
,
Shopland
,
L.
,
Lawrence
,
J. B.
,
Penman
,
S.
,
Hiebert
,
S.
,
Lian
,
J. B.
,
van Wijnen
,
A. J.
, et al.
(
1998
).
Intranuclear targeting of AML/CBFα regulatory factors to nuclear matrix-associated transcriptional domains
.
Proc. Natl. Acad. Sci. USA
95
,
1585
-
1589
.
Zhang
,
L.
,
Fried
,
F. B.
,
Guo
,
H.
and
Friedman
,
A. D.
(
2008a
).
Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation
.
Blood
111
,
1193
-
1200
.
Zhang
,
F.
,
Meng
,
G.
and
Strober
,
W.
(
2008b
).
Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells
.
Nat. Immunol.
9
,
1297
-
1306
.
Zhang
,
Y.
,
Xie
,
R.-L.
,
Croce
,
C. M.
,
Stein
,
J. L.
,
Lian
,
J. B.
,
van Wijnen
,
A. J.
and
Stein
,
G. S.
(
2011
).
A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2
.
Proc. Natl. Acad. Sci. USA
108
,
9863
-
9868
.
Zhao
,
X.
,
Jankovic
,
V.
,
Gural
,
A.
,
Huang
,
G.
,
Pardanani
,
A.
,
Menendez
,
S.
,
Zhang
,
J.
,
Dunne
,
R.
,
Xiao
,
A.
,
Erdjument-Bromage
,
H.
, et al.
(
2008
).
Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity
.
Genes Dev.
22
,
640
-
653
.
Zhu
,
X.
,
Yeadon
,
J. E.
and
Burden
,
S. J.
(
1994
).
AML1 is expressed in skeletal muscle and is regulated by innervation
.
Mol. Cell. Biol.
14
,
8051
-
8057
.
Zou
,
Y.-R.
,
Sunshine
,
M.-J.
,
Taniuchi
,
I.
,
Hatam
,
F.
,
Killeen
,
N.
and
Littman
,
D. R.
(
2001
).
Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage
.
Nat. Genet.
29
,
332
-
336
.
Zovein
,
A. C.
,
Hofmann
,
J. J.
,
Lynch
,
M.
,
French
,
W. J.
,
Turlo
,
K. A.
,
Yang
,
Y.
,
Becker
,
M. S.
,
Zanetta
,
L.
,
Dejana
,
E.
,
Gasson
,
J. C.
, et al.
(
2008
).
Fate tracing reveals the endothelial origin of hematopoietic stem cells
.
Cell Stem Cell
3
,
625
-
636
.

Competing interests

The authors declare no competing or financial interests.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.