During gonadogenesis in mice, cells within the coelomic endothelium (CE) proliferate to give rise to additional CE cells as well as somatic cells of the gonads. But how is this cell fate decision – CE versus gonadal – determined? In this issue, Blanche Capel and colleagues show that NUMB, a known antagonist of Notch signalling, plays a central role (p. 1607). They show that, during early gonadogenesis in mice, NUMB is asymmetrically localised to the basolateral domain of CE cells, which also exhibit high levels of Notch signalling. Importantly, the authors report that the temporal deletion of Numb results in gonadal defects; mutant gonads contain patches of undifferentiated cells, reduced numbers of differentiated somatic cells and, curiously, reduced numbers of germ cells. The polarity of CE cells in mutant gonads is also disrupted. Finally, the researchers demonstrate that blocking Notch signalling (using the g-secretase inhibitor DAPT) can rescue the somatic cell defects. Based on their findings, the authors propose that asymmetric divisions in the CE give rise to one daughter that remains in the CE, and one daughter that inherits NUMB and the competence to differentiate.
Controlling somatic cell NUMB-ers during gonadogenesis
Controlling somatic cell NUMB-ers during gonadogenesis. Development 1 May 2017; 144 (9): e0903. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.