The epicardium – a single layer of cells that covers the heart – contributes to multiple cardiac lineages and is essential for heart development and regeneration. During development, the epicardium arises from a transient structure known as the pro-epicardium (PE): pro-epicardial cells (PECs) dissociate from the PE, translocate across the pericardial cavity and attach to the heart surface. The molecular and cellular mechanisms that control this process have thus far been elusive but, now, Mingfu Wu and co-workers reveal four different mechanisms of PEC translocation to myocardium and a key role for the small GTPase CDC42 during epicardial development in mice (p. 1635). They first report that the conditional knockout of Cdc42 in PECs results in epicardial defects, with PECs failing to form villous protrusions and floating cysts and failing to translocate to the myocardium. The authors further demonstrate that Cdc42 null PECs exhibit loss of polarity and impaired cell dynamics. Finally, they reveal that CDC42 also regulates the trafficking of FGFR1 in PECs and hence is likely to be required for FGF2-mediated signalling activity in these cells. Overall, these findings provide new insights into the mechanism by which the epicardium forms and highlight a pivotal role for CDC42 in epicardial development.
CDC42 shapes up the epicardium Free
CDC42 shapes up the epicardium. Development 1 May 2017; 144 (9): e0902. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.