Left-right asymmetry is a common feature of many organs, and is crucial for their function. The stomach is one such organ, with marked curvature on the left compared with the right, resulting in a distinctive shape that is highly conserved among vertebrates. Although it is well established that activation of Nodal controls left-right asymmetry of visceral organs, the cell- and tissue-level morphogenetic mechanisms that drive this phenomenon are poorly understood, especially in the stomach. Now, on p. 1477, Nanette Nascone-Yoder and colleagues shed light on the mechanisms that drive left-right asymmetric development of the stomach in both mouse and Xenopus embryos. The authors start with a gross examination of stomach curvature during development and compare their findings with two proposed models: a rotation model and an asymmetric growth model. They find no evidence for the former, and therefore suggest that the stomach acquires its asymmetry by an intrinsic mechanism. In support of this, the authors show that there is an asymmetric thickness of the left and right stomach wall, which depends on intact cilia and Nodal signalling as both Foxj1 mutant mouse embryos and Xenopus embryos treated with a Nodal inhibitor show a loss of this asymmetry. The authors show a role for Pitx2 in this process by overexpressing Pitx2 on the right side or knocking down Pitx2, both of which affect stomach curvature in Xenopus. This study demonstrates that asymmetric morphogenesis of the stomach in frogs and mice is driven by FoxJ1-Nodal-Pitx2-dependent asymmetric remodelling of the gastric epithelium on the left side.
How the stomach gets its curve
How the stomach gets its curve. Development 15 April 2017; 144 (8): e0802. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.