Stem cell quiescence has been reported in many systems, and typically involves the slowing or stalling of the cell cycle and low transcriptional activity. Primordial germ cells (PGCs) of sea urchin are known to enter a quiescent state prior to gastrulation, before re-activating later in development. Now (p. 1201), Gary Wessel and co-workers show that this quiescence also involves a significant reduction in translational activity. Two potential mechanisms are uncovered. Firstly, Nanos2, which is expressed specifically in PGCs, binds to and downregulates the critical translation factor eIF1A. Secondly, mitochondrial number and activity is low in PGCs, which might induce a switch to glycolytic metabolism and hence an acidification of the cytoplasm. Increasing cellular pH promotes translational activity specifically in PGCs. This work raises many intriguing questions. For example, how is translational activity re-activated at later stages? How are the metabolic changes in PGCs orchestrated? How general might this be in quiescent stem cell populations? Thus, the identification of this previously unrecognised phenomenon of transient translational quiescence in sea urchin PGCs opens up many new avenues for investigation.
Turning off translation in germ cells
Turning off translation in germ cells. Development 1 April 2017; 144 (7): e0703. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.