Although mammals have internal mechanisms for regulating body temperature, the vast majority of organisms are ectotherms, meaning that their body temperature is dictated by the external environment. Temperature fluctuations significantly affect cellular homeostasis, but the molecular mechanisms underlying these effects are currently poorly understood. Multiple lines of evidence suggest that microtubules are sensitive to cold, with suboptimal temperatures causing their disassembly. Christian Lehner and colleagues (p. 4573) employed global gene expression analyses of Drosophila S2R+ cells grown over a range of temperatures to identify β-Tubulin 97EF, a previously poorly characterised β-tubulin paralogue, to be among the most temperature-responsive. This upregulation was confirmed in vivo, and exhibited distinct tissue specificity, with expression being most prominent in the gut and the hemocytes. Despite the mild phenotypic consequences of β-Tubulin 97EF inactivation, likely confirming functional redundancy between β-Tubulin paralogues, βTub97EF mutant Drosophila embryos were more sensitive to the cold than their wild-type counterparts. Moreover, although there was no correlation between β-Tubulin 97EF levels and microtubule assembly rates, microtubules containing β-Tubulin 97EF were less prone to destabilisation at lower temperatures. Taken together, these results identify β-Tubulin 97EF as a cold-regulated isoform that promotes microtubule stability, and highlight the importance of mechanisms to allow acclimation to temperature variations.
Braving the cold with β-Tubulin 97EF
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 15 December 2017
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Braving the cold with β-Tubulin 97EF. Development 15 December 2017; 144 (24): e2404. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.