The plant hormone brassinosteroid (BR), which signals through its receptors BR INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1) and BRL3, is known to regulate hypocotyl elongation but how it functions in the root is less clear. In this issue, Christian Hardtke and colleagues assess the role of BR during cell differentiation in the Arabidopsis root (p. 272). They first show that bri1 brl1 brl3 triple mutants display protophloem differentiation defects. These defects cannot be rescued by activating BR signalling in adjacent cell files, suggesting that BR acts in a cell-autonomous manner to control protophloem differentiation. Triple mutants also exhibit a small meristem, and the authors show that this can be explained by reduced cell elongation that, together with increased formative divisions in the radial dimension, contributes to the overall reduction in root growth observed in these mutants. Finally, the researchers demonstrate that the protophloem-specific activation of BR signalling can rescue all major aspects of the triple mutant phenotype, thus uncovering a new facet of the non-cell-autonomous effects of BR signalling. Based on these and other findings, the authors propose that BR perception in the protophloem is sufficient to systemically convey BR action within the root meristem.
Getting to the root of brassinosteroid function Free
Getting to the root of brassinosteroid function. Development 15 January 2017; 144 (2): e0203. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8863)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.