During vertebrate brain development, neurons and glia arise from a population of self-renewing radial glial cells (RGCs) that contact the cerebral ventricles and bear a primary cilium. Primary cilia are known to play crucial roles in signalling but it is not clear if they are required for morphogenesis. Now, on p. 201, Nathalie Spassky and co-workers show that primary cilia on RGCs are essential for proper ventricular morphogenesis in mice. They first report that ciliary mutant mice exhibit enlarged lateral ventricles (ventriculomegaly) and reduced cortical thickness. The absence of primary cilia also leads to an increase in the size of RGC apical domains. This apical endfoot enlargement, the authors report, is associated with spindle orientation defects and is caused by upregulation of the mTORC1 pathway. Accordingly, treatment with rapamycin – an mTORC1 inhibitor – prevents apical domain enlargement in ciliary mutants and rescues their ventriculomegaly phenotype. Overall, this study reveals a new role for the mTORC1 pathway in regulating ventricle morphogenesis and corticogenesis, suggesting that it constitutes a new potential therapeutic target for the treatment of ventriculomegaly.
Brainy roles for cilia and mTORC1 Free
Brainy roles for cilia and mTORC1. Development 15 January 2017; 144 (2): e0202. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.