During spermatogenesis, unnecessary organelles and cytoplasmic components are shed from developing sperm in order to streamline them for optimal motility. These components are partitioned into structures known as ‘residual bodies’, which subsequently separate from the sperm and are lost. In the nematode worm C. elegans, this partitioning occurs immediately after the meiotic divisions, thus accelerating the process of sperm production. On p. 3253, Diane Shakes and colleagues exploit the interspecies diversity in spermatogenesis among nematodes to reveal how cellular components become partitioned. Focussing on the role of microtubules and actin, they characterise the process in C. elegans and in another nematode species, Rhabditis sp. SB347, and find important mechanistic variations between the two. In Rhabditis, which produces small spermatocytes, two rather than four sperm are generated during meiosis; the rest of the genetic material is partitioned into residual bodies. Interestingly, this mirrors oocyte production and resulting polar-body formation in females. These results provide insight into both the conserved and divergent mechanisms that underpin partitioning during spermatogenesis, and reveal how these segregation mechanisms can be modulated to achieve differences between species.
Separating nematode species by spermatogenesis
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 15 September 2017
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Separating nematode species by spermatogenesis. Development 15 September 2017; 144 (18): e1801. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.