DNA methylation is an epigenetic mechanism that promotes heterochromatin formation, silences imprinted loci, the X chromosome, repeats and transposable elements. The idea that DNA methylation also represses differentially expressed genes has been challenged by experiments showing that loss of genomic methylation, either during early embryonic development or in mutants, does not result in a burst of gene activation. On p. 2925, work by Kirsten Sadler and co-workers confirms and extends the model that DNA methylation functions primarily as a gatekeeper for transposons. They report that mutants with a hypomethylated genome upregulate interferons, leading to the recruitment and expansion of immune cells in the developing larva. Rather than being directly due to derepression of interferon genes in the demethylated state, interferon production is stimulated by the detection of nucleic acids in the cytosol of a cell. This normally indicates the presence of a virus, but the mutants used in the study were not infected. So, what elicits this response? The authors reveal that the aberrant transcription of transposable elements caused by demethylation results in the production of cytosolic DNA that triggers the antiviral response. This mechanism could act as an early-warning system, allowing cells in the developing embryo with widespread epigenetic abnormalities to be put under immune surveillance so they can be rapidly eliminated if necessary.
A fishy response of transposons to demethylation
A fishy response of transposons to demethylation. Development 15 August 2017; 144 (16): e1603. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.