Primary cilia are antenna-like cellular organelles that act as sensory receptors and also play an important role in signal transduction. Formation of these structures occurs as cells exit the cell cycle, whereupon centrioles migrate to the apical domain and become the basal bodies that anchor the new cilia as it forms. Centrosomal protein CP110 is a crucial regulator of centriolar division during the cell cycle and is thought to act as a key suppressor of ciliogenesis, based on in vitro studies. In this issue (p. 1491), Anand Swaroop and colleagues add a new twist to this theory and show that, in vivo, the absence of CP110 results in a failure to make cilia in a Cp110−/− mouse model. The authors show that ablation of Cp110 causes lethality shortly after birth due to organogenesis defects that are similar to those observed in ciliopathies. Using serum-starved embryonic fibroblasts derived from Cp110−/− mice, they further demonstrate a failure of basal body docking to membranes during cilia formation. These data challenge the prevailing view and demonstrate a more complex role of CP110 in the ciliogenic pathway, and highlight the importance of in vivo studies for our understanding of ciliogenesis in a physiologically relevant setting.
Surprising role for CP110 in cilia biogenesis Free
Surprising role for CP110 in cilia biogenesis. Development 1 May 2016; 143 (9): e0902. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8863)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.