Setd5 is a poorly characterised murine member of the SET domain family, generally associated with histone methyltransferase activity. However, the closest homologues of Setd5 are thought to be catalytically inactive, and have instead been associated with the regulation of histone acetylation levels at genes. On p. 4595, Anna Osipovich and colleagues generate Setd5 mutant mice and embryonic stem cells (mESCs). Setd5 homozygosity is lethal, with mutant embryos failing to survive beyond E10.5. Phenotypically, mutants display multiple defects, most notably in the cardiovascular system. Globally, cell proliferation is impaired and apoptosis increased. The mESC system reveals phenotypes consistent with the in vivo observations, including impaired differentiation down the cardiac lineage, while RNA-seq analysis shows that over 10% of coding genes are dysregulated in mutant cells – including key genes involved in cardiovascular development. Setd5 interacts with members of the polymerase-associated factor 1 complex (PAF1C) and NCoR co-repressor complex, the latter of which mediates gene silencing through histone deacetylation. Although the precise developmental consequences of Setd5 ablation have yet to be fully understood, this work suggests that this protein might cooperate with PAF1C and NCoR to mediate co-transcriptional regulation of histone acetylation and gene activity.
SETting chromatin state through transcription
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 15 December 2016
- Share Icon Share
-
Tools Icon
Tools
- Search Site
SETting chromatin state through transcription. Development 15 December 2016; 143 (24): e2401. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.