Adult stem cells are often exposed to genotoxic stress, whether directly from the environment or from within their own stem cell niche. DNA damage accumulates in the stem cells of aged tissues and has been proposed to accelerate both cellular aging and cancer formation, yet the mechanism through which this occurs is not well understood. Now, on p. 4312, Ting Xie and colleagues investigate this issue and demonstrate that DNA damage disrupts germline stem cell (GSC) self-renewal and lineage differentiation in a checkpoint kinase 2 (CHK2)-dependent manner. The authors use an inducible system to generate widespread double-stranded breaks (DSBs) in the GSCs of the Drosophila ovary. These DSBs resolve over time but leave the tissue with significantly fewer GSCs. By contrast, the number of GSC daughter cells initially increases then remains constant, suggesting that differentiation is blocked. The authors go on to identify a role for CHK2, showing how the induction of DSBs in flies lacking CHK2 is sufficient to prevent damage-induced GSC loss. Finally, the authors provide some evidence to suggest that the loss of GSCs may be partly due to reduced BMP signalling and cell adhesion. This study offers insight into how DNA damage might affect stem cell-based tissue regeneration and provides a mechanistic target – CHK2 – for further investigation.
CHK2 mediates DNA damage in adult stem cells
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 01 December 2016
- Share Icon Share
-
Tools Icon
Tools
- Search Site
CHK2 mediates DNA damage in adult stem cells. Development 1 December 2016; 143 (23): e2305. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.