Fluid flow is known to play a role in the development and remodelling of both blood and lymphatic vessels. But how is fluid flow sensed and transduced into a response? Here, Michael Simons and colleagues identify a role for syndecan 4 (SDC4) in regulating flow-induced remodelling of the lymphatic vasculature in mice (p. 4441). They first show that Sdc4−/− mice exhibit lymphatic vessel remodelling defects during the late stages of embryonic development. Notably, the alignment of valve-forming lymphatic endothelial cells (LECs), and hence valve formation, is perturbed in these mutants. The authors note that these defects are similar to those seen in mice mutant for Pecam1, which encodes a known flow-sensing molecule, but that Sdc4−/−; Pecam1−/− double knockouts exhibit a more severe phenotype, suggesting that SDC4 and PECAM1 act via distinct pathways. Following on from this, the researchers demonstrate that SDC4 acts by regulating the planar cell polarity protein VANGL2; SDC4 knockdown LECs express increased levels of VANGL2 in response to flow and fail to align under flow, whereas the reduction of VANGL2 levels in these cells restores flow-induced alignment. Together, these findings uncover new regulators of flow-mediated remodelling in the lymphatic vasculature.
Syndecan 4 lets lymphatic endothelial cells go with the flow
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 01 December 2016
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Syndecan 4 lets lymphatic endothelial cells go with the flow. Development 1 December 2016; 143 (23): e2301. doi:
Download citation file:
Advertisement
Cited by
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.