Enteric nervous system (ENS) development involves reciprocal interactions between enteric neural crest-derived cells (ENCCs) and their environment as they migrate along the intestine, differentiate, and become patterned. Here, Allan Goldstein, Nandor Nagy and colleagues examine these interactions and reveal that sonic hedgehog (Shh) patterns the extracellular matrix to control enteric nervous system development in chick embryos (p. 264). They report that Shh is expressed specifically in the epithelium of the gut, which harbours an ENS, but not in the epithelium of the bursa of Fabricius, a structure that is associated with the gut but does not have an ENS. They then show, using chick-quail tissue recombinations in which hindgut epithelium is replaced with epithelium from the bursa of Fabricius, that ENS development is perturbed in the absence of hindgut epithelium. Hypothesising that epithelium-derived Shh controls hindgut ENS formation, the authors demonstrate that Shh inhibition causes hyperganglionosis, whereas Shh overexpression causes aganglionosis owing to decreased proliferation and premature differentiation of ENCCs. Finally, they reveal that modulating Shh activity dramatically alters the expression of ECM proteins, such as versican and collagen IX, that are known regulators of neural crest cell migration. These, together with other findings, suggest that epithelial-derived Shh acts indirectly on the developing ENS by regulating the intestinal microenvironment.
Enteric nervous system development: a role for Shh Free
Enteric nervous system development: a role for Shh. Development 15 January 2016; 143 (2): e0203. doi:
Download citation file:
Advertisement
Cited by
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 30 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. Together with our preprint highlights service, preLights, these perspectives help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.
the Node: Have your say

Our community site, the Node, is conducting a user survey about the content and the design of the site. Help us shape the Node's future and thank you for being a part of the Node over the last 15 years.