Mutations in human DISC1, a protein associated with the dynein motor complex, have been implicated in schizophrenia. In mouse, knockdown of DISC1 causes a number of phenotypes, including premature neuronal differentiation and impaired neurite and axonal outgrowth, while Disc1 mutants, although viable and fertile, show strong behavioural defects. However, the potential functions of DISC1 in glia, including astrocytes, have been less studied, even though disruption of astrocytes has been reported in schizophrenic patients. Jianwei Jiao and co-workers (p. 2732) therefore set out to assess the consequences of Disc1 loss- or gain-of-function in mouse astrocytes. Both in vivo and in vitro, they find that Disc1 depletion impairs astrogenesis, while overexpression promotes differentiation down the astrocyte lineage. Mechanistically, the authors show that DISC1 modulates RAS/MEK/ERK signalling, which is known to be important for astrogenesis: upon Disc1 deletion, MEK and ERK phosphorylation (and hence activation) is impaired. In this context, interaction between DISC1 and the RAS-association domain protein RASSF7 appears to be important: as with DISC1, overexpression of RASSF7 promotes astrocyte differentiation. Although the potential contribution of this astrogenic activity of DISC1 to the schizophrenia phenotype has yet to be analysed, these data suggest that modulation of astrocyte differentiation may be relevant for this neuropsychiatric disorder.
A role for DISC1 in astrogenesis
A role for DISC1 in astrogenesis. Development 1 August 2016; 143 (15): e1502. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence Programme: our 2024 PI fellows
Following a successful pilot year in 2023 with a fantastic set of postdocs, we are delighted to announce our second cohort of Pathway to Independence (PI) fellows, who we will be supporting with training, mentoring and networking opportunities over the coming years.
Development presents…
Development is excited to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are chaired each month by a different Development Editor, who invites talks from authors of exciting new papers and preprints. Visit Development presents... on the Node to see which topics are coming up and to catch up on recordings of past webinars.
40 years of the homeobox
2024 marks the 40th year since the discovery of the homeobox in 1984, a landmark that fundamentally impacted several fields including genetics, developmental biology, neuroscience and evolution. To celebrate this anniversary, Development has commissioned a series of articles from leaders in the field demonstrating the impact of the homeobox discovery on different disciplines.
Biologists @ 100 - join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register your interest to join us in March 2025 in Liverpool, UK.