Bone healing, for example fracture repair in humans, often involves a cartilage intermediate but how this tissue is induced and contributes to healing is unclear. Here, Gage Crump and co-workers show that regeneration of the zebrafish jawbone involves cells of a hybrid cartilage-bone nature (p. 2066). They first report that the lower jawbone of adult zebrafish regenerates via a cartilage intermediate. The analysis of cells within this injury-induced cartilage reveals that they express both chondrocyte- and osteoblast-associated genes and can undergo mineralization. This is in contrast to the situation observed in developmental chondrocytes of zebrafish, which do not express osteoblast genes and do not mineralize. The researchers further report that these repair chondrocytes likely arise from the periosteum – a tissue that usually gives rise to osteoblasts. Finally, they demonstrate that the induction of repair chondrocytes from the periosteum involves an unexpected role for Indian hedgehog signalling, which is normally involved in chondrocyte proliferation during development. Thus, while it has generally been assumed that regeneration involves the same processes that are employed during development, this study suggests that regeneration induces a unique cartilage differentiation and repair programme.
A distinct cartilage programme for bone regeneration Free
A distinct cartilage programme for bone regeneration. Development 15 June 2016; 143 (12): e1201. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.