In the vertebrate spinal cord, the LIM-homeodomain transcription factors Isl1 and Lhx3 act in concert with the linker protein NLI to regulate neuronal differentiation: Lhx3/NLI complexes promote V2a interneuron fate, whereas Lhx3/Isl1/NLI complexes direct motor neuron differentiation. However, how these complexes mediate transcriptional activation is still poorly understood. Soo-Kyung Lee and co-workers now (p. 1721) elucidate a role for the single-stranded DNA binding proteins Ssdp1/2 in this process. Ssdps are known to interact with NLI in various contexts and have been implicated as possible components of LIM-containing complexes. Here, the authors show that Ssdp1/2 interact with Lhx3, Isl1 and NLI, and that they are required for efficient activation of target genes – both in vivo and in vitro. In both chick and mouse, Ssdp1/2 knockdown compromises V2a and motor neuron differentiation. Mechanistically, Ssdp1/2 appear to be involved in recruiting histone-modifying enzymes to Lhx3/Isl1 targets, triggering deposition of active chromatin marks. Thus, this work identifies Ssdps as key components of transcriptional regulator complexes in the spinal cord and it is likely that they play similar roles in other developmental contexts.
Coactivator complexes in the spinal cord Free
Coactivator complexes in the spinal cord. Development 15 May 2016; 143 (10): e1004. doi:
Download citation file:
Advertisement
Cited by
Save the date - Human Development: Stem Cells, Models, Embryos

We will be hosting a 2026 Human Development: Stem Cells, Models, Embryos meeting. We have teamed up with the Wellcome-funded consortium, the Human Developmental Biology Initiative (HDBI) to co-organise this event, which will bring together researchers from around the world, united by an interest in understanding human developmental biology. Save the date for 7-9 September 2026 and register.
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
From bench to business

In this Perspective, researchers who have transitioned from academia to industry tell us how they have navigated patents, intellectual property, investors and biotechnology start-ups to bring new biological advances from the bench and into the boardroom.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=9135)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.