Genes involved in phosphoinositide signalling are conserved across eukaryotes, yet their role in plant development remains unclear. Now (p. 1437), Christian Hardtke and colleagues reveal that balanced phosphatidylinositol-4,5-bisphosphate (PIP2) levels are required for differentiation of the Arabidopsis protophloem, a specialised vascular tissue found in the root. The researchers analyse plants harbouring mutations in COTYLEDON VASCULAR PATTERN 2 (CVP2) and its partially redundant homolog CVP2-LIKE 1 (CVL1), which encode phosphoinositide 5-phosphatases that convert PIP2 into phosphatidylinositolphosphate (PIP). They reveal that a second site mutation in cvp2 partially rescues previously identified mutants with impaired protophloem development, suggesting that PIP2 levels modulate protophloem differentiation. In line with this, they demonstrate that CVP2 hyperactivation impairs protophloem differentiation and overall root growth. The researchers further show that, while cvp2 and cvl1 single mutants display no apparent root defects, double mutants paradoxically also exhibit protophloem differentiation defects and a skewed PIP to PIP2 ratio. Finally, they report, this impaired protophloem differentiation systemically alters the auxin response in the root system and, hence, lateral root emergence. In summary, these findings highlight a crucial role for tightly regulated PIP2 levels in the Arabidopsis root and suggest that activity in the primary root protophloem shapes root architecture.
Rooting for a role for PIP2 in plants
Rooting for a role for PIP2 in plants. Development 15 April 2015; 142 (8): e0803. doi:
Download citation file:
Advertisement
Cited by
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.