In the mature retina, retinal inhibitory neurons (RINs) are arranged in three distinct layers composed of horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs), respectively. How do such interneurons reach their specific laminar positions during development? To explore this question, William Harris and co-workers (p. 2665) quantify cell behaviour in the developing retina of several transgenic zebrafish lines over long periods of time. They first show that all RIN types show a bipolar morphology and migrate to the centre of the retina, near the region where the inner plexiform layer (IPL) later forms. RINs then adopt a multipolar morphology and can migrate tangentially, frequently changing direction. Interestingly, multipolar RINs are highly dynamic and do not just pile up in the centre of the retina according to their time of arrival, as previously thought. Moreover, RINs undergo cell type-specific behaviours that fine-tune their position. Contrary to previous belief, dACs actively migrate to their respective layer through the proto-IPL rather than being trapped in their layer by the future IPL. This study offers a valuable framework for further dissecting the molecular mechanisms of retina lamination.
A neuronal ballet mediates the lamination of the retina
A neuronal ballet mediates the lamination of the retina. Development 1 August 2015; 142 (15): e1503. doi:
Download citation file:
Advertisement
Cited by
Biologists @ 100 - join us in Liverpool in March 2025

We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register by 28 February 2025 to join us in March 2025 in Liverpool, UK.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.