A balanced network of excitatory and inhibitory synapses is required for correct brain function, and any perturbations to this balance can give rise to neurological and psychiatric disorders. It has been shown previously that FGF22 and FGF7 promote excitatory or inhibitory synapse formation, respectively, in the hippocampus, but how do these ligands mediate their synaptogenic effects? Here, Hisashi Umemori and co-workers use various FGF receptor knockout mice to address this question (p. 1818). They first show that excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice. Following on from this, they reveal that both FGFR2b and FGFR1b act downstream of FGF22 and are required for FGF22-dependent excitatory presynaptic differentiation. The authors further show that the kinase activity of FGFR2b as well as its ability to bind to FRS2 and PI3K is required for it to respond to FGF22. By contrast, they report, inhibitory presynaptic differentiation is defective only in Fgfr2b, and not Fgfr1b, mutants. In line with this, they demonstrate that FGF7 requires FGFR2b and not FGFR1b to mediate its effect on inhibitory presynaptic differentiation. Together, these findings indicate that distinct but overlapping sets of FGF receptors sculpt excitatory and inhibitory synapse formation in the mammalian brain.
FGF receptors sculpt synaptogenesis
FGF receptors sculpt synaptogenesis. Development 15 May 2015; 142 (10): e1002. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.