The thymus is central to the adaptive immune system, but it is one of the first organs to undergo an age-related decline in function. Reduced expression of the thymic epithelial cell (TEC)-specific transcription factor FOXN1 has been associated with thymus degeneration, but whether restoration of FOXN1 expression can regenerate an aged thymus is unknown. Now, on p. 1627, Clare Blackburn and colleagues show that provision of FOXN1 in the thymus can reverse fully established age-related thymic degeneration. The authors use an elegant transgenic mouse model to induce the expression of FOXN1 exclusively in the TECs of aged mice, and show that the resulting rejuvenated thymus displays tissue architecture and gene expression similar to that of a much younger mouse. Importantly, the regenerated thymus can generate and export new T cells: a function that is crucial for its role in the adaptive immune system. This is the first report of the regeneration of a whole, aged organ by a single factor and has exciting implications for regenerative medicine.
Ageing thymus out-FOXed
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 15 April 2014
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Ageing thymus out-FOXed. Development 15 April 2014; 141 (8): 1601. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.