In mice, the formation of lymphatic vessels (lymphangiogenesis) requires the homeodomain transcription factor Prox1. Here, Stefan Schulte-Merker and colleagues examine whether the role of Prox1 is conserved in zebrafish (p. 1228). Using a novel transgenic reporter line, the researchers show that, in contrast to the situation seen in mice, zebrafish Prox1 is initially not expressed in all lymphatic precursor cells and reliably marks this population only during later stages of lymphangiogenesis, arguing against a role for Prox1 in lymphatic specification. In addition, targeted mutagenesis demonstrates that lymphangiogenesis can proceed in the complete absence of Prox1. Finally, they show that the functionally related transcription factors Coup-TFII and Sox18, which are implicated in lymphatic specification in mice, are also dispensable for zebrafish lymphangiogenesis. The authors conclude that an alternative lymphatic specification mechanism is present in zebrafish and propose that differences in the timing of lymphangiogenesis between mice and fish can explain this divergence.
Lymphangiogenesis: of mice and fish Free
Lymphangiogenesis: of mice and fish. Development 15 March 2014; 141 (6): e605. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.