Histone H3 lysine 4 trimethylation (H3K4me3) is a universal epigenetic mark that is deposited by histone methyltransferases. This mark can be found in the context of bivalent promoters, which harbour both repressive H3K4me3 and active H3K27me3 marks and hence are thought to be poised for lineage-specific activation or repression. Here, Francis Stewart, Henk Stunnenberg and co-workers challenge this model of poising (p. 526). They first show that the H3K4 methyltransferase Mll2 is responsible for H3K4me3 on bivalent promoters in embryonic stem cells (ESCs). Accordingly, the researchers find that Mll2 is bound to bivalent promoters but also to active promoters. By contrast, another H3K4 methyltransferase, Set1C, is bound to active but not bivalent promoters. Importantly, they observe that Mll2-deficent ESCs, which lack H3K4me3 on bivalent promoters, exhibit normal transcription responsiveness, thus arguing against a model of poising. Based on these and other findings, the authors propose that Mll2 acts as a pioneer methyltransferase and that Polygroup group action on bivalent promoters blocks the establishment of active Set1C-bound promoters.
A new model for bivalency
A new model for bivalency. Development 1 February 2014; 141 (3): e302. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.