In both plants and animals, cellular senescence is not only an age-related process, but can also contribute to developmental programs. In plants, senescence can occur with age and in response to suboptimal growing conditions to reallocate nutrients from the leaves to the developing parts of the plant, particularly to maturing seeds. However, the interplay between age- or environmentally induced senescence and developmental programs is still unclear. Using a ChIP-Seq approach in Arabidopsis (p. 4772), the groups of Stephan Wenkel and Ulrike Zentgraf demonstrate that REVOLUTA (REV), a transcription factor well known to establish polarity in the developing plant, directly regulates the expression of WRKY53, a master regulator of age-induced leaf senescence. Furthermore, the authors show that mutations in REV delay the onset of leaf senescence and that REV functions as a redox sensor that modulates the expression of WRKY53 in response to oxidative stress, a known trigger of senescence. Altogether, this study uncovers a coupling between developmental programs and senescence transcriptional networks in the leaf. This opens the possibility that, conversely, senescence-related tissue degradation might also contribute to early leaf development.