During a heart beat, an electrical impulse leads to the contraction of the upper part of the heart: the atria. The electrical impulse slows down through the atrioventricular junction (AVJ) before resuming rapid propagation to induce contraction of the lower part of the heart: the ventricles. This contraction delay, combined with the presence of cardiac valves, is crucial for unidirectional blood flow in the heart and is altered in various heart diseases. How is this slow conducting property established and restricted to the AVJ? On p. 4149, Takashi Mikawa and colleagues discover that, contrary to the current hypothesis, the AVJ does not maintain juvenile slow conduction; instead, AVJ conduction velocity is plastic and determined by its proximity to the endocardium (the inner lining of the heart). They further show that the cardiac jelly (an extracellular martix-rich deposit that accumulates during valve formation) acts as a crucial physical barrier separating the AVJ from endocardial signals that induce a fast conduction phenotype. The authors thus uncover an exciting mechanism whereby valve formation and the delay in chamber contraction are developmentally linked, and open new perspectives for understanding heart development and congenital diseases.
Getting to the heart of slow conducting cardiomyocytes
Getting to the heart of slow conducting cardiomyocytes. Development 1 November 2014; 141 (21): e2104. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.