Neuronal subtype specification is regulated by the coordinated action of transcription factors. Any one factor may be expressed in multiple subtypes, but specification is achieved based on the precise combination of factors and is therefore context dependent. In this issue (p. 422), Oliver Hobert and colleagues explore neuronal differentiation in C. elegans and focus on the role of the TTX-3 LIM homeodomain transcription factor in regulating neural subtype specification. The authors find that TTX-3 is broadly required in multiple neuron classes of relatively unrelated identity, but that the interacting partners and downstream targets of TTX-3 are subtype specific. TTX-3 is required for cholinergic AIY interneuron specification, while an interaction with the POU domain protein UNC-86 leads to the specification of serotinergic NSM neurons. Furthermore, UNC-86 itself can specify cholinergic IL2 sensory and URA motoneurons via cooperation with the ARID-type transcription factor CFI-1. This detailed analysis of transcriptional cascades reveals a programming roadmap for neuronal subtype specification.
Roadmap for neuronal specification
Roadmap for neuronal specification. Development 15 January 2014; 141 (2): e201. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. September featured the Kerosuo lab at the National Institute of Dental and Craniofacial Research, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.