X-chromosome inactivation (XCI) enables dosage compensation between XX females and XY males, and its absence causes lethality, owing to defects in extra-embryonic tissues. However, it has also been shown that some genes are able to escape XCI in these tissues. Here, Catherine Corbel, Edith Heard and colleagues reconcile these findings and show that the inactive X (Xi) in one particular extra-embryonic cell type – trophoblast giant cells (TGCs) – has an unusual chromatin status (p. 861). Using RNA FISH on sections of postimplantation mouse embryos, they show that XCI is maintained in embryonic lineages, whereas TGCs show a high level of escape from XCI. Partial re-expression of most X-linked genes analysed, with the exception of the G6pd housekeeping gene, was observed in TGCs. In addition, the Xi in TGCs possesses an unusual organization and chromatin status, exhibiting both active and inactive chromatin marks. The authors propose that this apparent ‘bivalence’ of the Xi might account for its instability in TGCs and suggest that additional mechanisms maintain silencing at key loci.
X inactivation: the great escape
X inactivation: the great escape. Development 15 February 2013; 140 (4): e404. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our upcoming Journal Meeting

Watch a session from Development’s next Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology live on the Node on Monday 18 September at 16:00 BST (15:00 UTC).
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.