Human hearts do not regenerate after a heart attack because adult mammalian cardiomyocytes proliferate poorly in response to injury. By contrast, zebrafish regenerate heart muscle after trauma by inducing cardiomyocyte proliferation. Studies of zebrafish heart regeneration might, therefore, identify ways to repair damaged human hearts. Here (p. 660), Wen-Yee Choi and co-workers develop a surrogate model for zebrafish heart regeneration that uses fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology to visualise cardiomyocyte proliferation in live zebrafish embryos. The researchers generate transgenic lines in which heart-specific promoters drive the expression of G1 and S/G2/M FUCCI probes and use these lines to identify several small molecules that alter cardiomyocyte proliferation during heart development. These molecules act via the Hedgehog, IGF or TGFβ signalling pathways, they report. Moreover, the researchers show, the same pathways are activated in regenerating zebrafish cardiomyocytes, and their pharmacological manipulation alters cardiomyocyte proliferation during adult heart regeneration. Future use of this new screening system may identify molecules with the potential to improve human heart regeneration.
Mending a broken heart
Mending a broken heart. Development 1 February 2013; 140 (3): e304. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.