Congenital biliary atresia is an incurable disease of newborn infants that is characterised by deformation of the gallbladder and biliary duct system. Yoshiakira Kanai and co-workers now report (p. 639) that haploinsufficiency of Sox17 in C57BL/6 background mice provides a genetic model for this poorly understood condition. The researchers show that SOX17, a transcription factor that is required for definitive endoderm development in various vertebrate species, is expressed at the distal edge of the gallbladder primordium during gallbladder and bile duct development. In Sox17+/− C57BL/6 embryos, cell-autonomous defects in the proliferation and maintenance of the gallbladder/bile duct epithelia lead to epithelial cell detachment from the luminal wall, bile duct atresia (blockage), bile leakage and inflammation in the bile ducts and liver at late foetal stages. These results suggest that SOX17 has a dose-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during late organogenesis and provide new insights into the pathogenesis of congenital biliary atresia.
Unpaired Sox17 models biliary atresia
Unpaired Sox17 models biliary atresia. Development 1 February 2013; 140 (3): e302. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.