The directed differentiation of pluripotent stem cells into endodermal derivatives, including insulin-producing pancreatic β cells, has considerable clinical promise in cell replacement therapies. The first step in this process is the conversion of pluripotent stem cells into definitive endoderm (DE). Here (p. 675), Douglas Melton and colleagues investigate the endodermal populations generated from mouse embryonic stem cells treated with Nodal (which is required for in vivo development of DE) or Activin A (which is thought to mimic Nodal activity). These TGFβ family members use the same signalling pathways but, although the researchers show that Nodal- and Activin-derived DE cells have similar gene expression patterns, Nodal-derived endoderm contributes much more efficiently to embryonic endoderm upon transplantation into the gut endoderm of mouse embryos. Importantly, this functional difference between Nodal- and Activin-derived endoderm extends to the subsequent development of pancreatic progenitors in vitro and maturation into insulin/c-peptide-expressing cells in vivo. These data provide a firm basis for the derivation of insulin-producing cells for disease modelling and cell therapy.
Directed differentiation: Nodal steps forward
Directed differentiation: Nodal steps forward. Development 1 February 2013; 140 (3): e301. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.