The hair follicle epithelium forms a tube-like structure that is continuous with the epidermis, but how the lumen of this structure is created during morphogenesis and regeneration remains unclear. Now, Sunny Wong and colleagues identify a novel population of cells that initiates hair follicle lumen formation in mice (p. 4870). The researchers first provide a detailed characterisation of the infundibulum, the region encompassing the hair follicle mouth, and identify a population of keratin 79 (K79)-positive epithelial cells within this region. Using lineage tracing, they show that these cells are specified early during hair follicle development and migrate outwards from the hair germ into the epidermis prior to lumen formation. This migratory event is also observed during regeneration of the hair follicle; K79-positive cells are specified in the secondary hair germ and migrate out, eventually forming a continuous layer with pre-existing K79-positive cells. These findings identify both a novel mode of epithelial tube morphogenesis and a unique population of cells that migrate throughout the life cycle of the hair follicle.
Opening a passage for hair growth
Opening a passage for hair growth. Development 15 December 2013; 140 (24): e2404. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.