Pulsatile blood flow is driven by the heart and is a universal feature of vertebrate blood systems. However, the mechanisms controlling blood flow propagation in the embryo, while heart maturation is ongoing, are poorly understood. Here, Julien Vermot and co-workers examine vascular hydrodynamics and biomechanics in zebrafish embryos (p. 4426). Using high temporal resolution imaging together with an optical tweezer-based approach, the authors characterise the flow within the embryonic vascular network. They show that strong flow rectification occurs between branches of the network, suggesting that an additional force is generated within the network. Based on the observed movement of blood cells within the embryonic artery, the authors postulate that elasticity of the network is essential for mediating this effect. Following this, they develop a mathematical model of flow within the network and propose that the dorsal aorta acts as a capacitor that inflates and deflates in response to heartbeats. They propose that this capacitive mechanism has a major role in setting early flow propagation and reducing embryonic heart effort.
Vascular biomechanics in full flow
Vascular biomechanics in full flow. Development 1 November 2013; 140 (21): e2105. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.