The chromatin-modifying Polycomb and trithorax group proteins are crucial for the establishment of key transcriptional networks during development. Kismet (KIS), a member of the trithorax group of proteins, promotes gene expression via transcriptional elongation as well as by antagonizing Polycomb-mediated repression; however, it is not understood how closely these two processes are linked and the molecular mechanisms that underpin them. In this issue (p. 4182), Kristel Dorighi and John Tamkun provide evidence for two distinct mechanisms of KIS-mediated gene regulation in Drosophila, separating the processes of transcriptional elongation and antagonism of Polycomb repression. The authors find that KIS recruits ASH1 to regulate levels of H3K27me3, but that ASH1 is dispensable for transcriptional elongation. Conversely, inhibition of transcriptional elongation does not affect ASH1 chromosome localization or H3K27me3 levels. Thus, the authors show that these two processes are independent and that, in addition to a general role in promoting transcriptional elongation, KIS has a separate specific role in recruiting ASH1, which regulates H3K27me3 levels and antagonizes Polycomb repression.