Regenerative medicine aims to replace lost or damaged tissues and organs with functional parts of the correct size and shape. To achieve this goal, we need to understand what determines the scale and form of regenerating tissues. Michael Levin and colleagues have been tackling this issue by investigating the regulation of organ size during planarian regeneration (see p. 313). During this process, existing tissues are remodelled concurrently with new tissue growth to maintain the correct relative tissue proportions. The researchers show that, in Schmidtea mediterranea, membrane voltage-dependent bioelectric signalling determines head size and organ scaling during regeneration. Specifically, RNA interference of the H+,K+-ATPase ion pump causes membrane hyperpolarisation and produces regenerated animals with shrunken heads and oversized pharynges, but does not inhibit the production of new tissue (blastema). Other experiments indicate that the H+,K+-ATPase ion pump maintains proportionality during regeneration by mediating apoptotic sculpting of the original tissues. Thus, bioelectric signalling regulates the cellular mechanisms that control organ size and shape during regeneration.
Bioelectric signals size up regeneration
Bioelectric signals size up regeneration. Development 15 January 2013; 140 (2): e203. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.