A gene expression oscillator called the segmentation clock controls the periodic formation of somites in vertebrate embryos. In zebrafish, negative autoregulation of the transcriptional repressor genes her1 and her7 is thought to control the clock’s oscillations. Delays in this negative-feedback loop, including transcriptional delay (the time taken to make each her1 or her7 mRNA) should thus control the clock’s oscillation period. On p. 444, Ertuǧrul Özbudak, Julian Lewis and colleagues report that, unexpectedly, mutants in which only her1 or her7 is functional have almost identical segmentation clock oscillation periods – because the her1 and her7 genes are very different lengths, the researchers had anticipated that the two mutants would have different transcriptional delays and thus different oscillation periods. The researchers resolve this paradox by showing that the RNA polymerase II elongation rate is extremely fast in zebrafish embryos. They suggest, therefore, that the time taken for her1 and her7 transcript elongation is relatively insignificant, and that other sources of delay (e.g. splicing delay) may instead determine the oscillation period.
Against the segmentation clock
Against the segmentation clock. Development 15 January 2013; 140 (2): e201. doi:
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.