Neural stem/progenitor cells in the mammalian hippocampus generate new neurons throughout life. But how do these integrate into a mature and functional neural circuitry? Here, Sebastian Jessberger and colleagues address this question by using a new imaging approach to analyse neurite growth from newborn granular cells (p. 2823). Using a novel system for culturing sections of mouse hippocampus, combined with retroviral labelling to mark newborn neurons and their progeny, the researchers visualised neurite growth over several days using confocal imaging. Dendritic processes, they report, extended in different directions, with all neurons showing a clear apical extension at ∼4 days. Moreover, the dendrites in such slice cultures follow a linear growth pattern that is characteristic of the growth patterns observed in the intact brain, as assessed by snapshot-based analyses, thus validating their approach. This approach for visualising the adult neurogenic niche opens up the possibility of investigating the dynamic events that occur during adult neurogenesis in both physiological and diseased states.
Imaging the neurogenic niche Free
Imaging the neurogenic niche. Development 1 July 2013; 140 (13): e1303. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.