Many epithelial tissues display planar cell polarity (PCP). This phenomenon has been best studied in Drosophila in which most epidermal cells produce hairs at one side that all point in the same direction. The molecular mechanisms underlying PCP establishment remain controversial. Key players are the transmembrane proteins Starry night (Stan; also known as Flamingo), Frizzled (Fz) and Vang Gogh (Vang, also known as Strabismus). Stan, a protocadherin, forms homodimeric bridges between cells. These bridges appear to link Fz and Vang on the abutting distal and proximal faces of adjacent cells, and their resulting asymmetric distributions polarise both cells to point the same way. Now, Struhl, Casal and Lawrence (p. 3665) report the surprising finding that Vang is not essential for cell polarisation. Instead, asymmetric interactions between Stan and Stan/Fz are sufficient to define polarity, and Vang plays an accessory role, probably by enhancing the capacity of Stan to interact with Stan/Fz. These results challenge current models of PCP, although the authors propose an alternative that may reconcile the data.
Stan points the way in planar polarity Free
Stan points the way in planar polarity. Development 1 October 2012; 139 (19): e1903. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.