During development, networks of regulatory genes control precisely timed sequences of developmental events. In C. elegans, heterochronic genes, which encode several transcription factors and microRNAs (miRNAs) that regulate the expression of these transcription factors, control stage-specific cell-fate decisions. Under adverse conditions, however, second larval stage (L2) worms enter a quiescent state called dauer. Intriguingly, when conditions improve, dauer larvae complete development normally. Here (p. 2177), Xantha Karp and Victor Ambros investigate how cell-fate progression is reset after dauer. Progression from L2 to L3 requires downregulation of the transcription factor Hunchback-like-1 (HBL-1), and, during continuous development, HBL-1 downregulation relies mainly on three let-7 family miRNAs. However, after dauer, the researchers report, lin-4 miRNA and an altered set of let-7 family miRNAs downregulate HBL-1. This shift in the programming of HBL-1 downregulation, they propose, involves the enhancement of lin-4 and let-7 miRNA activity by miRNA-induced silencing complex (miRISC) modulators. The employment of alternative genetic regulatory pathways can, therefore, ensure the robust progression of cell-fate specification after temporary developmental quiescence.
Resetting after quiescence
Resetting after quiescence. Development 15 June 2012; 139 (12): e1202. doi:
Download citation file:
Advertisement
Cited by
Biologists @ 100 - join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register your interest to join us in March 2025 in Liverpool, UK.
Pathway to Independence Programme: our 2024 PI fellows
Following a successful pilot year in 2023 with a fantastic set of postdocs (several of whom are now establishing their own labs), we are delighted to be working with our second cohort of Pathway to Independence (PI) fellows, who we will be supporting with training, mentoring and networking opportunities over the coming years.
Development presents…
Development is excited to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are chaired each month by a different Development Editor, who invites talks from authors of exciting new papers and preprints. Visit Development presents... on the Node to see which topics are coming up and to catch up on recordings of past webinars.
40 years of the homeobox
2024 marks the 40th year since the discovery of the homeobox in 1984, a landmark that fundamentally impacted several fields including genetics, developmental biology, neuroscience and evolution. To celebrate this anniversary, Development has commissioned a series of articles from leaders in the field demonstrating the impact of the homeobox discovery on different disciplines.
Modelling Plant Stem Cells: Evolution, Development and Regeneration
Early-career researchers can now apply for a funded place for the Modelling Plant Stem Cells: Evolution, Development and Regeneration Workshop happening on 18-21 May 2025. This is a great opportunity that could enhance your career in various ways. Application deadline: Friday 15 November 2024.