Accurate axonal pathfinding relies on the tightly regulated expression of guidance cues and their receptors, but the links between transcriptional regulators and downstream guidance factors are poorly understood. Genetically amenable Drosophila motoneurons provide an ideal system for analysing the control of guidance receptor expression. It is known that two transcription factors, Even-skipped (Eve) and Grain (Grn) are expressed in the aCC and RP2 motoneurons, and that projection of these neurons to the muscle requires the Netrin receptor Unc-5. Now, Juan-Pablo Labrador and colleagues dissect out the relationships between these factors (p. 1798). The researchers find that Eve and Grn independently promote Unc-5 transcription, and that both are required to generate sufficient Unc-5 expression for proper pathfinding – likely via an enhancer element in unc-5 intron 5. Overexpression of both Eve and Grn in another motoneuron population induces ectopic Unc-5 and hence axonal redirection. Thus, the combinatorial effects of these two transcription factors together direct expression of the key guidance receptor, and so define the axon’s path.
Eve and Grain guide the way for axon pathfinding
Eve and Grain guide the way for axon pathfinding. Development 15 May 2012; 139 (10): e1004. doi:
Download citation file:
Advertisement
Cited by
Development presents... live stream of our Journal Meeting

Watch a session from Development’s Journal Meeting, Unconventional and Emerging Experimental Organisms in Cell and Developmental Biology which was live on the Node Monday 18 September.
Navigating a research career with a disability

Our two recent Perspectives articles explore the lived experiences of disabled scientists in our community. Kelsey L. Anbuhl and colleagues describe the lived experiences of five biologists who share the challenges and successes of undertaking a scientific career with a disability. Whereas Jack Darius Morgan reviews the literature exploring disabled scientists’ experiences in academia.
Focus on regeneration

Tissue regeneration is a fascinating phenomenon, but the cellular and molecular mechanisms underlying regeneration remain incompletely understood. Here, Development has collated a series of articles showcasing some of the most recent advances in regenerative biology.
Keeping up with the Node: Lab meetings

Keep up with the Node 'Lab meeting' posts as the platform regularly highlights development and stem cell biology labs from across the globe and showcases research and researchers from the community. August featured the Nichols lab at the University of Edinburgh, read their 'Lab meeting' article here.
Read & Publish Open Access publishing: what authors say

We have had great feedback from authors who have benefitted from our Read & Publish agreement with their institution and have been able to publish Open Access with us without paying an APC. Read what they had to say.