Nodal and its feedback inhibitor Lefty instruct left-right (LR) asymmetry in vertebrates, but what controls the spatial distribution of these ligands in the embryo? On p. 475, Lindsay Marjoram and Christopher Wright address this question by expressing functional epitope-tagged Nodal and Lefty from grafts implanted into tailbud Xenopus embryos. Both ligands move long distances along the extracellular matrix (ECM), they report, with Lefty moving faster than Nodal. Moreover, sulphated proteoglycans in the ECM seem to facilitate Nodal movement. Thus, the researchers propose, Nodal autoregulation aided by rapid ligand transport underlies the anteriorward shift of Nodal expression along the left lateral plate mesoderm (LPM), with higher levels of chondroitin-sulphate proteoglycan in more mature anterior regions providing directional transport cues. Finally, they report, Lefty moves from the left to the right LPM, a result that strengthens LR patterning models that involve active blocking of right-sided Nodal expression. Future molecular studies into how Nodal and Lefty interact with sulphated proteoglycan-rich ECM should provide additional insights into the establishment of LR asymmetry.
Fast Nodal/Lefty movements set LR asymmetry Free
Fast Nodal/Lefty movements set LR asymmetry. Development 1 February 2011; 138 (3): e0305. doi:
Download citation file:
Advertisement
Cited by
Save the date - Human Development: Stem Cells, Models, Embryos

We will be hosting a 2026 Human Development: Stem Cells, Models, Embryos meeting. We have teamed up with the Wellcome-funded consortium, the Human Developmental Biology Initiative (HDBI) to co-organise this event, which will bring together researchers from around the world, united by an interest in understanding human developmental biology. Save the date for 7-9 September 2026 and register.
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
From bench to business

In this Perspective, researchers who have transitioned from academia to industry tell us how they have navigated patents, intellectual property, investors and biotechnology start-ups to bring new biological advances from the bench and into the boardroom.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=9135)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.