Planarian flatworms have amazing regenerative abilities. Tissue fragments from almost anywhere in their anatomically complex bodies can regenerate into complete, perfectly proportioned animals, a feat that makes planarians ideal for the study of regenerative organogenesis. Now, on p. 3769, Alejandro Sánchez Alvarado and colleagues provide the first detailed description of the excretory system of Schmidtea mediterranea, which consists of internal protonephridial tubules composed of specialised epithelial cells. Using α-tubulin antibodies to stain cilia in the planarian's excretory system and screens of gene expression patterns in whole mounts, the researchers show that protonephridial tubules form a complex branching structure that has a stereotyped succession of cell types along its length. Organ regeneration originates from a precursor structure that undergoes extensive branching morphogenesis, they report. Moreover, in an RNAi screen of signalling molecules, they identify EGF signalling as a crucial regulator of branching morphogenesis. Overall, these results establish the planarian protonephridia as a model system in which to study the regeneration and evolution of epithelial organs.