Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.

Cells need to sense cues from their extracellular environment and integrate this information into appropriate developmental or physiological responses. Although there are a number of mechanisms that relay information from the exterior of the cell to the interior, a relatively small set of highly evolutionarily conserved signaling pathways stand out as playing particularly crucial roles in this transmission of information. In this roster of `elite' intracellular signaling mechanisms are the Wnt pathway, the sonic hedgehog (Shh) pathway, the bone morphogenetic protein/transforming growth factor β (BMP/TGFβ) pathway, phosphatidylinositol 3-kinase/thymoma viral proto-oncogene (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and, the subject of this review, the Notch signaling pathway. Each of these pathways converts information about the concentration of extracellular ligands into specific transcriptional responses in the nucleus. In most cases, the signaling mechanism consists of the `core' signaling pathway, i.e. the minimal set of protein components required for transducing the signal, and a more elaborate set of `auxiliary' proteins, which, in various ways, impinge upon the core pathway and modify the signal but are not intrinsically necessary for relaying the signal.

Among these highly conserved pathways (Gazave et al., 2009; Richards and Degnan, 2009), the Notch signaling pathway scores highly with regard to simplicity in molecular design, as it contains only a small number of core signaling components (Fig. 1). Despite this, Notch signaling affects cell differentiation decisions not only across a wide spectrum of metazoan species, but also across a broad range of cell types in a single organism and at different steps during cell lineage progression. The pleiotropic actions of Notch in different cell types and organs have recently been reviewed (Liu et al., 2010) and are summarized in Table 1. In keeping with its important role in many cell types, the mutation of Notch genes leads to diseases in various organs and tissues (Table 2). These studies highlight the fact that the Notch pathway must be able to elicit appropriate responses in many spatially and temporally distinct cell contexts.

In this review, we address the conundrum of how this functional diversity is compatible with the simplistic molecular design of the Notch signaling pathway. In particular, we focus on recent observations, in both vertebrate and invertebrate systems, that begin to shed light on how diversity is generated at different steps in the signal transduction pathway and how signal strength itself is modulated in Notch signaling output.

The core Notch pathway has a simple molecular architecture (Fig. 1). The most extensively characterized signaling pathway initiated in response to Notch ligands is known as the canonical Notch signaling pathway. In canonical Notch signaling, a Notch transmembrane receptor interacts extracellularly with a canonical Notch transmembrane ligand on a contacting cell, initiating proteolytic cleavage of the receptor and the subsequent release of the Notch intracellular domain (Notch ICD or NICD) of the receptor. Notch ICD then translocates to the nucleus where it interacts with a CBF1/Suppressor of Hairless/LAG-1 (CSL) family DNA-binding protein {C promoter-binding factor (CBF1) is also known as recombination signal binding protein for immunoglobulin kappa J region (RBPJ-κ) or kappa-binding factor 2 (KBF2) in mammals, as Suppressor of Hairless [Su(H)] in flies and Longevity-assurance gene-1 (LAG-1) in C. elegans} and initiates the transcription of Notch target genes (Fig. 1). Non-canonical Notch signaling differs from canonical signaling in that it can be initiated by a non-canonical ligand, or may not require cleavage of the Notch receptor. Alternatively, in some forms of non-canonical signaling there is no involvement of CSL, which may reflect interactions with other signaling pathways upstream of the Notch ICD-CSL interaction. Non-canonical Notch signaling has recently been reviewed (D'Souza et al., 2010; Heitzler, 2010) and is outside the scope of this review. Here, we focus on the multitude of mechanisms that are utilized to generate diversity from the otherwise simple canonical Notch pathway.

A conspicuous feature of the core canonical Notch pathway is the lack of an amplification step during signal transduction; this is in contrast to most other pathways, which have integrated signal amplification steps, for example in the form of phosphorylation of one or more of the core pathway proteins. In addition, each activated Notch receptor molecule is consumed during signaling, yielding one NICD, suggesting that Notch signaling exhibits a stoichiometric relationship between signaling input and output and that signaling strength is important for generating the appropriate cellular response. In keeping with this line of reasoning, the Notch pathway is indeed very sensitive to gene dosage deviations, and both haploinsufficiency and the presence of extra copies of the Notch gene in Drosophila result in aberrant phenotypes (Fanto and Mlodzik, 1999; Lyman and Yedvobnick, 1995; Mohr, 1919). Furthermore, mice haploinsufficient for Notch1 display supernumerary hair cells in the inner ear (Zhang et al., 2000), whereas mice haploinsufficient for one of the Notch ligands (Dll4+/– mice) are embryonic lethal (Krebs et al., 2004). In human, haploinsufficiency of NOTCH2 or jagged 1 (JAG1), which encodes a Notch ligand, is observed in Alagille syndrome (McDaniell et al., 2006), a broad-spectrum syndrome characterized by liver, heart and eye defects as well as vertebral malformations (Alagille et al., 1987; Alagille et al., 1975), and NOTCH1 haploinsufficiency is also seen in aortic valve disease (Garg et al., 2006).

Fig. 1.

The Notch pathway: simplicity and complexity in one. The core Notch pathway contains a limited set of components that form the signal-transmitting chain in the pathway: a ligand (green), a Notch receptor (orange) and the transcription factor CSL (pink). In addition, some components (furin, ADAM secretase, γ-secretase and MAML; blue ovals) are not part of conveying the signal but are nevertheless crucial for allowing the signal to be transmitted from one step to the next in the pathway. Briefly, the Notch receptor is synthesized as a single transmembrane receptor that is Furin-cleaved to yield a bipartite heterodimeric Notch receptor, which is expressed on the cell surface of a `receptor-expressing' cell. This receptor can be activated at the plasma membrane by binding to Notch ligands on `ligand-expressing' cells. This leads to the removal of the extracellular domain of Notch, which is then targeted for lysosomal degradation. The remaining portion of the receptor, termed the Notch extracellular truncated (NEXT) domain, undergoes sequential cleavage by ADAM secretases and γ-secretase as it becomes endocytosed, yielding the Notch intracellular domain (NICD). NICD then translocates to the nucleus where it binds the DNA-binding protein CSL (CBF1/Suppressor of Hairless/LAG-1) and activates the transcription of Notch target genes. This simple signaling pathway can be modified in a number of ways by a growing roster of auxiliary proteins (gray), which influence various stages of the transduction process and contribute to signal diversity. AML1, acute myeloid leukemia 1 (also known as RUNX1); DDR1, discoidin domain receptor family, member 1; NECD, Notch extracellular domain; RITA, RBP-J interacting and tubulin associated.

Fig. 1.

The Notch pathway: simplicity and complexity in one. The core Notch pathway contains a limited set of components that form the signal-transmitting chain in the pathway: a ligand (green), a Notch receptor (orange) and the transcription factor CSL (pink). In addition, some components (furin, ADAM secretase, γ-secretase and MAML; blue ovals) are not part of conveying the signal but are nevertheless crucial for allowing the signal to be transmitted from one step to the next in the pathway. Briefly, the Notch receptor is synthesized as a single transmembrane receptor that is Furin-cleaved to yield a bipartite heterodimeric Notch receptor, which is expressed on the cell surface of a `receptor-expressing' cell. This receptor can be activated at the plasma membrane by binding to Notch ligands on `ligand-expressing' cells. This leads to the removal of the extracellular domain of Notch, which is then targeted for lysosomal degradation. The remaining portion of the receptor, termed the Notch extracellular truncated (NEXT) domain, undergoes sequential cleavage by ADAM secretases and γ-secretase as it becomes endocytosed, yielding the Notch intracellular domain (NICD). NICD then translocates to the nucleus where it binds the DNA-binding protein CSL (CBF1/Suppressor of Hairless/LAG-1) and activates the transcription of Notch target genes. This simple signaling pathway can be modified in a number of ways by a growing roster of auxiliary proteins (gray), which influence various stages of the transduction process and contribute to signal diversity. AML1, acute myeloid leukemia 1 (also known as RUNX1); DDR1, discoidin domain receptor family, member 1; NECD, Notch extracellular domain; RITA, RBP-J interacting and tubulin associated.

In addition to the components in the core pathway, a growing roster of auxiliary proteins has been shown to affect Notch signaling at various steps of the signal transduction pathway. Such auxiliary proteins range from intracellular proteins that affect ligand intracellular trafficking in the signal-sending cell, such as Mind bomb (Mib) (Itoh et al., 2003) and Neuralized (Neur) (Yeh et al., 2001), to proteins that are important for regulating Notch ICD and CSL interactions, such as Mastermind-like (MAML) (Jeffries et al., 2002; Wu et al., 2002). Some of the most important auxiliary proteins are depicted in Fig. 1. In the following sections, we explore how modulations of the Notch pathway at different steps of signal transduction can contribute to the observed versatility in signaling output and to the modulation of signal strength.

Table 1.

Notch signaling regulates numerous developmental processes

Notch signaling regulates numerous developmental processes
Notch signaling regulates numerous developmental processes
Notch signaling regulates numerous developmental processes
Notch signaling regulates numerous developmental processes

In mammals, there are four Notch receptors (Notch1-4) and five canonical ligands of the Delta-Serrate-Lag (DSL) type [Jag1 and Jag2 and delta-like 1 (Dll1), Dll3 and Dll4] (reviewed by D'Souza et al., 2010). This generates a large number of receptor-ligand combinations, which could potentially generate distinct responses. There is, however, little evidence for differences in signaling output between particular receptor-ligand combinations, with the notable exception of Dll3, which is the most structurally divergent ligand and lacks an extracellular Delta and OSM-11-like protein (DOS) domain as well as lysine residues in the intracellular domain (Dunwoodie et al., 1997). Dll3 is incapable of activating Notch receptors in trans (Ladi et al., 2005) and is rarely, if ever, present at the cell surface (Chapman et al., 2011; Geffers et al., 2007).

The relative strength of receptor-ligand interactions, however, can be modulated by post-translational modifications of Notch receptors. The extracellular epidermal growth factor (EGF) repeats of Notch receptors can be modified by O-glucose or O-fucose additions, which are then subject to further modification (Stanley and Okajima, 2010). The addition of O-fucose to Notch receptors by protein O-fucosyltransferase 1 (Pofut1), which is not required for Notch receptor signal transduction per se (Okajima et al., 2008), is necessary for the subsequent glycosylation of Notch receptors by Fringe proteins (such as lunatic fringe, manic fringe and radical fringe in mammals). Fringe proteins can then add N-acetylglucosamine (GlcNAc) sugars to the O-fucose moiety. This glycosylation modulates the relative response of Notch receptors to ligands of the Delta versus Jagged/Serrate classes: Fringe potentiates interactions with Dll1 and reduces responsiveness to Jag1 (Hicks et al., 2000; Kato et al., 2010). The Fringe-mediated transcriptional changes reported thus far appear to be quantitative rather than qualitative in nature, i.e. the level of expression of the same set of downstream genes is modulated but the set of downstream genes that is activated or repressed is not changed, although this has not been systematically explored at a genome-wide level. Notch can also be glycosylated by the glycosyltransferase Rumi (Poglut1) (Acar et al., 2008; Fernandez-Valdivia et al., 2011) and by two enzymes of the human glycosyltransferase 8 family (Sethi et al., 2010). How the Notch receptor is modified by glycans is the subject of much research (Stanley and Okajima, 2010), and it will be interesting to see which modifications are required for basic Notch function and which confer ligand-specific effects. For example, a secreted Fringe protein, chondroitin sulfate synthase 1 (CHSY1), has recently been identified that appears to suppress Notch signaling; loss of function of CHSY1 leads to hyperactivation of Notch signaling and Notch gain-of-function phenotypes (Tian et al., 2010).

The expression domains of Fringe genes frequently coincide with those of either Dll or Jag ligands, and it is likely that Fringe+/Jag+ domains and Fringe+/Dll+ domains have different effects on tissue organization and tissue domain boundaries. In situations in which a Fringe+/Jag+ domain is juxtaposed with a Fringe/Dll+ domain, Notch signaling becomes localized to the interface between the two domains. For example, at the dorsoventral margin of the Drosophila wing, where Fringe is co-expressed with Jagged (Serrate) at the dorsal side, and Delta is expressed alone at the ventral side, Notch signaling is active in only the wing margin, as signaling in both the Fringe+/Jag+ and Fringe/Delta+ domains is inhibited, and occurs only immediately across the domain boundary at the wing margin (Irvine and Wieschaus, 1994; Wu and Rao, 1999). Conversely, co-expression of Fringe with Dll1 but not with Jag1 results in Notch signaling both within the Fringe+/Delta+ and the Fringe/Jag+ domains, but not at the domain boundary. This occurs, for example, in dorsoventral domains in the developing ventral spinal cord and is important for appropriate cell fate decisions and helps to insulate the domains from each other at the domain boundaries as the spinal cord develops (Marklund et al., 2010).

Restricting the distribution of Notch ligands and receptors to specific areas within cells can also contribute to signaling specificity, as it may allow only certain combinations of cells in a larger cellular cluster to engage in Notch signaling. This is observed in Drosophila sensory organ development, a model system that relies on Notch signaling to generate lateral inhibition (the process whereby a cell adopts a particular fate and prevents its immediate neighbors from doing likewise) and which proceeds through a series of asymmetric cell divisions. The adult peripheral nervous mechanosensory system arises from the development of a single cell, the sensory organ precursor (SOP), which divides asymmetrically to produce a pIIa and a pIIb cell. Each of these cells also divides asymmetrically to produce a socket and a shaft cell (from the pIIa cell) and a glial cell and a pIIIb cell (from the pIIb cell). The pIIIb cell undergoes one more asymmetric division to produce a neuronal cell and a sheath cell (Wang and Chia, 2005). During SOP development, Delta is recycled in a Rab11-dependent manner (Emery et al., 2005) and is relocalized from the basolateral to the apical membrane in a process that requires Neur (Benhra et al., 2010), Actin-related protein 2/3 (Arp2/3) and Wiskott-Aldrich syndrome protein (WASp) (Rajan et al., 2009). This recycling exclusively juxtaposes Delta in the pIIb cell to the other Notch-expressing pIIa cell, providing the precise signal required for neuronal fate specification (Emery et al., 2005; Jafar-Nejad et al., 2005).

Table 2.

Mutations in Notch signaling components result in developmental defects and diseases in humans

Mutations in Notch signaling components result in developmental defects and diseases in humans
Mutations in Notch signaling components result in developmental defects and diseases in humans

An alternative means to localize Notch activation is by positioning Notch ligands at cellular protrusions, such as filopodia, which leads to the activation of signaling some distance away from the signal-sending cell (Cohen, M. et al., 2010; De Joussineau et al., 2003), literally stretching the concept of cell-cell communication. Cellular motility can also generate specificity by providing a dynamic interaction between Notch ligands and receptors, thus influencing the duration of signaling. An example of this is seen in zebrafish mikre oko (mok) mutants, which are defective for the motor protein Dynactin 1. In these mutants, the pace of interkinetic movements within the neuroepithelium is altered and mutant neuroepithelial progenitor cells are therefore less exposed to active Notch signaling, resulting in premature cell cycle exit and overproduction of early-born retinal ganglion cells at the expense of later-born interneurons and glia (Del Bene et al., 2008).

In most cellular contexts, ligands are not uniquely expressed on the signal-sending cell and, vice versa, receptors are not expressed only on the signal-receiving cell. The cells therefore need to establish the direction in which signaling should occur, based sometimes on relatively small concentration differences of ligand and receptor. Directionality of Notch signaling stems, at least in part, from the fact that ligands activate receptors on contacting cells (trans-activation), but generally inhibit receptors expressed in the same cell (cis-inhibition) (de Celis and Bray, 1997; del Alamo et al., 2011; Micchelli et al., 1997; Miller et al., 2009; Sprinzak et al., 2010). Cis-inhibition has been reported to lead to a downregulation of Notch receptor at the cell surface (Matsuda and Chitnis, 2009; Perez et al., 2005), although this is not always seen (Fiuza et al., 2010), as well as to a cell-autonomous downregulation of Notch target genes. As discussed above, Dll3 might serve exclusively as a cis-inhibiting ligand, as it is incapable of activating receptors in trans (Ladi et al., 2005).

Progress has been made in unraveling how other ligands can expedite both trans-activating and cis-inhibitory activities. For example, the extracellular DSL-EGF 3 domain of Serrate is important for both trans-activation and cis-inhibition (Cordle et al., 2008), whereas mutations in the intracellular domain of Serrate affect trans-activation but not cis-inhibition (Glittenberg et al., 2006). However, it has also been shown that Notch ligand and receptor ICDs display competitive interactions. In endothelial cells, for example, Notch ICD can suppress the antiproliferative effect of Delta ICD (Kolev et al., 2005) and, conversely, the intracellular domain of Jag1 has been shown to suppress Notch ICD-induced transcription in COS cells (LaVoie and Selkoe, 2003). Cis-inhibition of the ligand by a Notch receptor can occur in the ligand-presenting cell (Becam et al., 2010), a process that is dependent on the Notch extracellular domain and which reduces the levels of cell-surface ligand available for transactivation of contacting cells.

In addition to the canonical ligands mentioned above, a multitude of non-canonical ligands (reviewed by D'Souza et al., 2010) can activate or inhibit Notch signaling. An interesting example of a non-canonical ligand is Delta-like homolog 1/2 (Dlk1/2), which is structurally similar to the Dll ligands but lacks a DSL domain. As such, it is believed to be incapable of transactivation and is thought to act through cis-inhibition by competing with trans-presented canonical ligands (Baladron et al., 2005). Recently, a model for trans-activation versus cis-inhibition has been proposed in which trans-activation occurs in a graded manner in response to increasing levels of ligand, whereas cis-inactivation occurs at a sharp threshold of Notch ligand co-expression, leading to an ultrasensitive switch that generates mutually exclusive sending (high ligand/low Notch) and receiving (low ligand/high Notch) signaling states (Sprinzak et al., 2010). This model remains to be tested in vivo.

As a result of ligand activation, the Notch receptor is proteolytically processed. This is followed by the release of Notch ICD and its translocation to the nucleus. These processing and relocalization events are regulated at multiple steps, providing further opportunities for modulating Notch signaling. The binding of a Notch receptor to its ligand leads to removal of the Notch extracellular domain (NECD) and its trans-endocytosis into the ligand-expressing cell (Hansson et al., 2010; Nichols et al., 2007; Parks et al., 2000). The Notch receptor is cleaved repeatedly during its lifetime, first at site 1 (S1) by furin during its maturation (Logeat et al., 1998) and subsequently at site 2 (S2) and sites 3/4 (S3/S4) after trans-activation by a Notch ligand. The S2 cleavage is the key regulatory step in receptor activation and is executed by ADAM (a disintegrin and metalloprotease) proteases. Recently, structural analysis of the Notch receptor domain that harbors the S2 cleavage site has laid the ground for a model for Notch processing. In this model, the ligand pulls the receptor into a state in which the negative regulator region (NRR) of the receptor unfolds and exposes an ADAM cleavage site. Interestingly, different ADAMs have been implicated in this cleavage event (Brou et al., 2000; Canault et al., 2010; Tian et al., 2008; Tousseyn et al., 2009; van Tetering et al., 2009), and a recent report indicates that specific ADAM proteases may cleave Notch specifically in a ligand-dependent or -independent manner (Bozkulak and Weinmaster, 2009). The structural aspects of the cleavage process have been reviewed recently (Kovall and Blacklow, 2010) and will not be discussed further here.

The remaining membrane-tethered portion of Notch, termed the Notch extracellular truncation (NEXT), is then a substrate for regulated intramembrane proteolysis by the γ-secretase complex, a multi-subunit protease complex containing presenilin, nicastrin, presenilin enhancer 2 (Pen2) and anterior pharynx-defective 1 (Aph1) (Jorissen and De Strooper, 2010). It was previously assumed that S3 cleavage followed more or less constitutively in the wake of the regulatory S2 cleavage, but recent data indicate that the activity of γ-secretase is also regulated, both with regard to cleavage efficacy and the position of the cleavage site in the receptor. Emerging evidence suggests that γ-secretase complexes containing different presenilin (PS1 or PS2) subunits have different cleavage preferences for amyloid precursor protein (APP), and to what extent PS1- and PS2-containing complexes differ with regard to Notch processing in vivo largely remains to be explored (Jorissen and De Strooper, 2010). A recent report shows that nicastrin is dispensable for γ-secretase-mediated processing of Notch, but important for the stability of the γ-secretase complex (Zhao et al., 2010). Other proteins that modulate the function of the γ-secretase complex, such as CD147 (also known as BSG), transmembrane protein 21 (Tmp21, also known as Tmed10) and γ-secretase activating protein (GSAP, also known as Pion) (Chen et al., 2006; He et al., 2010; Zhou et al., 2006), have also been identified but the mechanistic basis for their differential effects on Notch versus other substrates awaits elucidation. Furthermore, S3 cleavage of Notch is heterogeneous with regard to the position of the cleavage site: Notch ICD fragments generated from S3 cleavage have either an N-terminal valine (Val) or an N-terminal serine/leucine (Ser/Leu), and Ser/Leu-NICD fragments have a shorter half-life than Val-NICD fragments (Tagami et al., 2008), which is likely to affect the duration of Notch signaling.

Notch processing is also controlled by estrogen receptor (ER) signaling, such that blockage of ER activity by tamoxifen increases Notch cleavage (Rizzo et al., 2008). Similarly, neuronal activity enhances Notch processing through the protein activity-regulated cytoskeleton-associated protein (Arc)/activity-regulated gene 3.1 protein homolog (Arg3.1) (Alberi et al., 2011), highlighting yet another way in which Notch processing, and hence Notch signaling, can be modulated.

Endocytosis of the Notch receptor is an important step in the transmission of the Notch signal, and, although Notch receptors initially interact with components of the γ-secretase complex at the cell surface (Hansson et al., 2005), there are indications that the majority of cleavage occurs after internalization of the receptor by endocytosis (Vaccari et al., 2008), although there is also evidence to the contrary (Kaether et al., 2006; Sorensen and Conner, 2010; Tarassishin et al., 2004). It is thus possible that the localization of Notch cleavage is variable and constitutes another level of signal fine-tuning that is dependent on cell context (Tagami et al., 2008). Notch receptor endocytosis requires mono-ubiquitylation of the receptor at lysine 1749 (Gupta-Rossi et al., 2004), and, recently, this mono-ubiquitylation event has been shown to be followed by de-ubiquitylation mediated by elF3f, previously thought to solely constitute a subunit of translation initiation factor E74-like factor 3 (Elf3), which is required for Notch to be processed by γ-secretase (Moretti et al., 2010). The putative E3 ubiquitin ligase Deltex, which has been implicated in the regulation of Notch processing and internalization in several studies (Diederich et al., 1994; Hori et al., 2004; Matsuno et al., 1995; Wilkin et al., 2008; Yamada et al., 2011), serves as a bridging protein between elF3f and Notch in early endosomes (Moretti et al., 2010). Deltex has been described as both a positive (Fuwa et al., 2006; Matsuno et al., 1995; Matsuno et al., 2002; Wilkin et al., 2008) and a negative (Sestan et al., 1999; Mukherjee et al., 2005) regulator of Notch signaling, and Deltex appears to be required for Notch signaling in some, but not all, developmental processes in Drosophila (Fuwa et al., 2006). Likewise, loss of Deltex function does not always severely impinge on Notch-dependent processes, such as T-cell development, in the mouse (Lehar and Bevan, 2006). Perhaps some of the discrepancy can be explained by the recent suggestion that canonical Notch signaling and Deltex-activated Notch signaling are separate events that are activated in different endocytic compartments (Yamada et al., 2011).

Numb (which is found in both Drosophila and vertebrates) is an endocytic adaptor protein that, like its mammalian homolog Numb-like (found in vertebrates), acts as a suppressor of Notch signaling (Rhyu et al., 1994; Uemura et al., 1989; Zhong et al., 1997) (for reviews, see Cayouette and Raff, 2002; Gonczy, 2008). Mechanistically, Numb has been shown to recruit the E3 ubiquitin ligase itchy (Itch), the mammalian homolog of Drosophila Suppressor of deltex [Su(Dx)], to promote degradation of the Notch receptor (Beres et al., 2011) and to regulate post-endocytic sorting events for Notch (McGill et al., 2009). Numb differentially affects various Notch receptors, which might increase diversity in the signaling response, and a recent report indicates that Numb negatively regulates Notch1 and Notch2 receptors, but not Notch3, during myogenic differentiation (Beres et al., 2011). In human, six alternatively spliced NUMB isoforms have been characterized to date. The two most recently identified isoforms, NUMB5 and NUMB6, are less potent antagonists of Notch signaling (Karaczyn et al., 2010), although it remains to be established if the difference in biological effects among the different isoforms is strictly due to different effects on Notch, as Numb also interacts with other signaling proteins, such as p53 and Gli1, a Hedgehog pathway effector (Colaluca et al., 2008; Di Marcotullio et al., 2006). Sanpodo, a transmembrane protein so far found only in Drosophila, is an important regulator of Notch signaling and has also been shown to associate with Notch and Numb during asymmetric cell division (O'Connor-Giles and Skeath, 2003), where it augments Notch signaling in the absence of Numb but represses Notch signaling in the presence of Numb (Babaoglan et al., 2009). There is an emerging view that the relationship between Numb and Notch is not just unidirectional. Thus, in addition to negative Numb-mediated regulation of Notch, it has been shown that Notch can reciprocally influence Numb. High levels of Notch, for example, reduce Numb and Numb-like protein levels in cultured cells and in the developing chick CNS (Chapman et al., 2006), and Notch controls the expression of Numb, upregulating it in cells that have not inherited Numb during cell division but must express Numb to later repress Notch (Rebeiz et al., 2011).

Fig. 2.

Notch ICD: domain structure and post-translational modifications. (A) The Notch receptor is a heterodimeric transmembrane protein composed of an extracellular domain and a transmembrane domain that can be cleaved to yield the Notch intracellular domain (NICD). (B) The NICD is composed of several domains (JM, RAM, ANK, TAD and PEST), two nuclear localization signals and several ankyrin repeats. These various domains and motifs can be modified by phosphorylation, hydroxylation, ubiquitylation or acetylation to alter signaling through NICD. The specific proteins that mediate these modifications are described in the text.

Fig. 2.

Notch ICD: domain structure and post-translational modifications. (A) The Notch receptor is a heterodimeric transmembrane protein composed of an extracellular domain and a transmembrane domain that can be cleaved to yield the Notch intracellular domain (NICD). (B) The NICD is composed of several domains (JM, RAM, ANK, TAD and PEST), two nuclear localization signals and several ankyrin repeats. These various domains and motifs can be modified by phosphorylation, hydroxylation, ubiquitylation or acetylation to alter signaling through NICD. The specific proteins that mediate these modifications are described in the text.

After internalization by endocytosis, the intracellular trafficking of Notch receptors further modulates the Notch signal. Compromised sorting of Notch from early endocytic vesicles to multivesicular bodies (MVBs) or lysosomal compartments, as seen in endosomal sorting complex required for transport (ESCRT) and lethal giant discs [lgd; also known as l(2)gd1] mutants, respectively, leads to ectopic, ligand-independent activation of Notch signaling (Childress et al., 2006; Jaekel and Klein, 2006; Vaccari et al., 2008). Recently, studies of Drosophila SOPs revealed a specialized endocytic routing of Notch signaling that generates differential Notch signaling in the resulting daughter cells. This trafficking is mediated via SARA (Smad anchor for receptor activation) endosomes, which segregate specifically to one of the two daughter cells in the production of pIIa and pIIb cells during asymmetric SOP division (for a review, see Gonczy, 2008). During SOP mitosis, Delta and Notch are both internalized into SARA endosomes, which are then asymmetrically localized to the pIIa, but not to the pIIb, cell, resulting in the ligand-dependent appearance of Notch ICD in only the pIIa cell (Coumailleau et al., 2009). It is important to note that SARA itself is not required in this process.

In the canonical Notch signaling pathway, the Notch ICD constitutes the `business end' of the Notch receptor and, after localization to the nucleus, Notch ICD interacts with CSL to activate the transcription of downstream genes. The Notch ICD is composed of several domains (Fig. 2), including a Rbp-associated molecule (RAM) domain that mediates interactions with CSL, an ankyrin (ANK) repeat domain, a transcription activation domain (TAD) and a C-terminal PEST [rich in proline (P), glutamic acid (E), serine (S) and threonine (T)] degradation domain (Kovall and Blacklow, 2010). It is becoming increasingly clear that the Notch ICD is subject to a variety of post-translational modifications, including phosphorylation, ubiquitylation, hydroxylation and acetylation (Fig. 2).

Regulation of Notch ICD by phosphorylation

The Notch ICD is phosphorylated at several residues and by several kinases. Phosphorylation of Notch ICD by glycogen synthase kinase 3 β (GSK3β) occurs C-terminally to the ANK repeats and inhibits Notch2 ICD-mediated induction of genes such as hairy and enhancer of split 1 (Hes1) (Espinosa et al., 2003), but stabilizes Notch1 ICD (Foltz et al., 2002). Granulocyte colony stimulating factor (Csf) also phosphorylates Notch2 ICD, leading to its inactivation (Ingles-Esteve et al., 2001). The PEST domain of Notch ICD contains multiple phosphorylation sites, which are important for the control of Notch ICD stability and serve as triggers for subsequent ubiquitylation (see below). Furthermore, cyclin C/cyclin-dependent kinase (CDK) 8 phosphorylates Notch ICD, and this modification is important for both the activity and turnover of Notch ICD (Fryer et al., 2004).

Regulation of Notch ICD by ubiquitylation

The Notch ICD can also be ubiquitylated, for example by E3 ubiquitin ligases, and this modification regulates its half-life (for a review, see Le Bras et al., 2011). F-box and WD-40 domain protein 7 (Fbxw7; also known as Cdc4 and SEL10) can also ubiquitylate Notch ICD within its PEST domain, leading to the rapid degradation of Notch ICD (Fryer et al., 2004; Gupta-Rossi et al., 2001; Oberg et al., 2001; Wu et al., 2001). The activity of Notch1 ICD, but not that of Notch4 ICD, was enhanced by a dominant-negative form of Fbxw7 (Wu et al., 2001). In contrast to these findings, however, the analysis of Fbxw7–/– mice revealed that the levels of Notch4 ICD, but not those of the Notch1, 2 and 3 ICDs, were elevated following Fbxw7 knockout (Tsunematsu et al., 2004), suggesting that the regulation of different Notch ICDs by Fbxw7 is likely to be complex. It has recently been shown that serum- and glucocorticoid-inducible kinase (SGK1) forms a trimeric complex with Notch ICD and Fbxw7, thereby enhancing Fbxw7-mediated Notch degradation (Mo et al., 2011). Functionally, Fbxw7 has been shown to be important in the control of stemness and neuronal fate versus glial differentiation in the developing brain (Matsumoto et al., 2011).

The importance of correctly controlling Notch ICD half-life and the role of Fbxw7 in this process is also underscored by the fact that NOTCH1 and FBXW7 mutations can be found in T-cell acute lymphoblastic leukemia (T-ALL) (Erbilgin et al., 2010; Malyukova et al., 2007). In T-ALL patients, gain-of-function mutations in NOTCH1 are found in more than 50% of cases (Weng et al., 2004) and loss-of-function mutations in FBXW7 have also been described (Malyukova et al., 2007; Mansour et al., 2009; O'Neil et al., 2007). The NOTCH1 mutations are concentrated in the extracellular heterodimerization (HD) domain and the intracellular PEST domain; mutations in the HD domain enhance Notch cleavage, whereas those in the PEST domain make the NOTCH1 ICD more resistant to ubiquitylation and subsequent degradation (Weng et al., 2004). In keeping with this, T-ALL cell lines lacking functional FBXW7 display extended NOTCH1 ICD half-lives (Malyukova et al., 2007; Mansour et al., 2009; O'Neil et al., 2007). Mutations in the PEST domain of NOTCH1 have also been found in non-small-cell lung cancer (Westhoff et al., 2009), suggesting that altered phosphorylation, ubiquitylation and degradation, and thus increased Notch signaling, can lead to cancer in several organs. Mutation or loss of NUMB, resulting in NOTCH gain of function, are likewise responsible for a large proportion of non-small-cell lung cancers (Westhoff et al., 2009), but it is not yet established whether mutations in FBXW7 also appear in non-small-cell lung cancer. Other E3 ubiquitin ligases affecting Notch include Deltex, which in addition to its role in Notch intracellular trafficking ubiquitylates Notch ICD (Yamada et al., 2011), and Itch (Cornell et al., 1999; Qiu et al., 2000), which is required for Notch1 degradation in the absence of ligand (Chastagner et al., 2008). For a recent review on the role of ubiquitylation in Notch signaling, see Le Bras et al. (Le Bras et al., 2011).

There is an expanding list of other non-E3 ubiquitin ligase proteins that interact with Notch ICD and thereby might influence Notch signaling output (see Table 3). However, relatively little is known about many of these interactions, and a number of them have thus far only been observed under conditions of overexpression. It is therefore important to determine whether these interactions occur under physiological conditions in cells in vivo, and whether these interactions with Notch ICD occur when Notch ICD is free in the cytoplasm or nucleoplasm, or only when Notch ICD is present in the transactivating complex together with CSL.

Regulation of Notch ICD by hydroxylation

Hydroxylation is an additional, more recently discovered type of post-translational modification of Notch ICD. The asparagine hydroxylase factor-inhibiting HIF1α (FIH1, also known as HIF1AN), which also operates in the cellular hypoxic response (see below), hydroxylates Notch ICD at two residues (N1945 and N2012) (Coleman et al., 2007; Zheng et al., 2008). It is notable that the ICDs of Notch1, 2 and 3, but not that of Notch4, are hydroxylated by FIH1, and this might contribute to signaling diversity. In vitro data suggest that FIH1 negatively regulates Notch signaling, but the biological significance of the FIH1-mediated modifications is not fully understood, and mice targeted for FIH1 do not display an overt Notch gain-of-function phenotype (Zhang et al., 2010).

Regulation of Notch by acetylation

More recently, acetylation and deacetylation of the Notch ICD have been shown to contribute to fine-tuning Notch half-life and thus signaling in endothelial cells, where the deacetylase sirtuin 1 (Sirt1) has been identified as a key deacetylase in this process (Guarani et al., 2011).

The binding of Notch ICD to CSL, which is stabilized by MAML, and the subsequent activation of downstream genes by Notch ICD-CSL are central aspects of canonical Notch signaling (Kovall and Blacklow, 2010). The analysis of Notch-induced transcriptomes in different cell types reveals a considerable diversity in the immediate downstream Notch response, which might be necessary for Notch to function in so many different cellular contexts. Genome-wide transcriptome studies in healthy or mutated T-cells (Chadwick et al., 2009; Dohda et al., 2007; Palomero et al., 2006; Weerkamp et al., 2006), mouse embryonic stem (ES) cells (Main et al., 2010; Meier-Stiegen et al., 2010), alveolar epithelial cells (Aoyagi-Ikeda et al., 2011), endometrial stromal cells (Mikhailik et al., 2009), C2C12 mouse myoblast cells (Buas et al., 2009) and Drosophila myogenic cells (Krejci et al., 2009) have unraveled distinct sets of Notch target genes with rather limited overlap of the transcriptomes. This is the case even when comparing transcriptome studies that were carried out with relatively similar modes and durations of Notch induction (summarized in Fig. 3). In addition to output diversity in different cell types, the Notch response changes during the cell cycle (for a review, see Kageyama et al., 2009) and throughout cell lineage progression, for example during T-cell development (for a review, see Radtke et al., 2010) and during neural differentiation of ES cells in vitro, when cyclin D1 is activated only at a specific temporal window during ES cell neural differentiation in vitro (Das et al., 2010).

Table 3.

Proteins that interact with the Notch ICD

Proteins that interact with the Notch ICD
Proteins that interact with the Notch ICD
Fig. 3.

Diversity in Notch ICD-induced transcriptomes. A comparison of genes upregulated by Notch1 ICD overexpression in different cell types [mouse embryonic stem (ES) cells undergoing ectodermal, mesodermal (Meier-Stiegen et al., 2010) or neural (Main et al., 2010) differentiation; the human colon carcinoma cell line LS174T (Okamoto et al., 2009); and human lymphatic endothelial cells (ECs) (unpublished, GSE20978)] reveals diversity in target gene activation. (A) Spearman correlation (ρ) of the five sets of transcriptomes following Notch1 ICD activation shows that the ES cell-derived transcriptomes are more similar to each other than to the colon carcinoma or lymphatic ECs, but that they demonstrate considerable diversity between them. (B) A comparison of the top 500 upregulated genes in ES cells undergoing ectodermal, mesodermal or neural induction and in response to Notch1 ICD activation. Twenty-one genes were found to be upregulated in all three differentiation paradigms (see Table S1 in the supplementary material). (C) The 21 genes upregulated in all three ES cell transcriptomes were compared with the top 500 upregulated genes in the colon carcinoma (LS174T) and lymphatic ECs. In this analysis, genes upregulated in all three situations were not identified, but Hey1 was upregulated in all three ES cell transcriptomes and in the lymphatic ECs. Gene expression data for series GSE19074, GSE15268, GSE10136 and GSE20978 were downloaded from Gene Expression Omnibus (GEO). The microarray probe set annotations were converted into RefSeq transcript IDs, taking the average for cases with more than one probe set interrogating the same transcript. RefSeq transcripts for the human data were converted into mouse annotations using NCBI Entrez Gene. For each experiment independently, the relative expression difference for each gene between the Notch-induced and control samples was computed and transformed into log2 scale, averaging over replicates when available. These relative expression vectors (one per comparison) were used to compute Spearman correlations and to perform analyses of overlaps in the top 500 upregulated genes.

Fig. 3.

Diversity in Notch ICD-induced transcriptomes. A comparison of genes upregulated by Notch1 ICD overexpression in different cell types [mouse embryonic stem (ES) cells undergoing ectodermal, mesodermal (Meier-Stiegen et al., 2010) or neural (Main et al., 2010) differentiation; the human colon carcinoma cell line LS174T (Okamoto et al., 2009); and human lymphatic endothelial cells (ECs) (unpublished, GSE20978)] reveals diversity in target gene activation. (A) Spearman correlation (ρ) of the five sets of transcriptomes following Notch1 ICD activation shows that the ES cell-derived transcriptomes are more similar to each other than to the colon carcinoma or lymphatic ECs, but that they demonstrate considerable diversity between them. (B) A comparison of the top 500 upregulated genes in ES cells undergoing ectodermal, mesodermal or neural induction and in response to Notch1 ICD activation. Twenty-one genes were found to be upregulated in all three differentiation paradigms (see Table S1 in the supplementary material). (C) The 21 genes upregulated in all three ES cell transcriptomes were compared with the top 500 upregulated genes in the colon carcinoma (LS174T) and lymphatic ECs. In this analysis, genes upregulated in all three situations were not identified, but Hey1 was upregulated in all three ES cell transcriptomes and in the lymphatic ECs. Gene expression data for series GSE19074, GSE15268, GSE10136 and GSE20978 were downloaded from Gene Expression Omnibus (GEO). The microarray probe set annotations were converted into RefSeq transcript IDs, taking the average for cases with more than one probe set interrogating the same transcript. RefSeq transcripts for the human data were converted into mouse annotations using NCBI Entrez Gene. For each experiment independently, the relative expression difference for each gene between the Notch-induced and control samples was computed and transformed into log2 scale, averaging over replicates when available. These relative expression vectors (one per comparison) were used to compute Spearman correlations and to perform analyses of overlaps in the top 500 upregulated genes.

Traditionally, hairy and enhancer of split-related (HESR) genes, which encode basic helix-loop-helix (bHLH) transcriptional repressors, have been considered key genes activated downstream of Notch signaling. HESR genes do indeed execute important aspects of Notch signaling, for example during tumor progression (Sethi et al., 2011; Wendorff et al., 2010), but it is becoming increasingly apparent that the immediate Notch transcriptome is larger, and that there are many genes activated in parallel with, rather than downstream of, the HESR genes. Challenging the view that HESR genes are always activated in response to Notch signaling, the microarray analyses performed for Fig. 3 revealed that only one HESR gene, hairy/enhancer-of-split related with YRPW motif 1 (Hey1), was upregulated in four of the five experiments, whereas Hes5 was upregulated in the ES cell experiments (see Table S1 in the supplementary material) but was not similarly upregulated in colon carcinoma cells or in lymphatic endothelial cells. Thus, some genes are seen to be upregulated in a number of cell types, but no one gene can be identified as an `obligatory' Notch target that will be upregulated in all cell types. Among the immediate Notch target genes, activated in parallel with HESR genes, are a number of `high profile' genes such as c-Myc (Rao and Kadesch, 2003; Satoh et al., 2004; Weng et al., 2006), cyclin D1 (Cohen, B. et al., 2010; Ronchini and Capobianco, 2001; Satoh et al., 2004), cyclin D3 (Joshi et al., 2009), cyclin-dependent kinase 5 (CDK5) (Palomero et al., 2006), p21 (Rangarajan et al., 2001), Snail (Sahlgren et al., 2008) and platelet-derived growth factor receptor beta (PDGFRβ) (Jin et al., 2008; Morimoto et al., 2010).

The basis for the observed transcriptome diversity in different cell types is only partially understood. The conventional view holds that CSL is bound via CGTGGGAA motifs to target promoters and that it represses transcription when Notch is not activated. Upon Notch pathway activation, Notch ICD, together with MAML, then displaces co-repressors and brings co-activators to the Notch ICD-CSL complex, which leads to transcriptional activation of target genes. Certain genes, at least some in Drosophila, thus appear to be in a repressed state in the absence of Notch signaling (Bardin et al., 2010; Castro et al., 2005; Koelzer and Klein, 2006), but it has also been shown that in Drosophila, the CSL homolog Su(H) is actively recruited to its binding sites by Notch ICD rather than being positioned there in the `Notch-off' state (Krejci and Bray, 2007). In keeping with a more dynamic interaction between CSL and its cognate DNA-binding sites, the binding coefficient between CSL and DNA has been shown to be weaker than previously considered (Friedmann and Kovall, 2010), whereas the affinity of CSL for the RAM domain of Notch ICD is unchanged by DNA binding (Friedmann et al., 2008). As discussed below, studies that aim to identify the factors that modulate the affinity of the Notch ICD-CSL complex for distinct promoter sequences are beginning to contribute to our understanding of the complexity of Notch signaling output.

Given that different Notch receptors have at least partially distinct expression patterns in most tissues, diversity in the downstream response could be generated if the different Notch ICDs are capable of activating distinct sets of downstream genes. There is some evidence for target selectivity, and the configuration of CSL binding sites within Notch target genes, for example if they appear as monomers or dimers, influences the likelihood of recruiting Notch1 or Notch3 ICD, respectively (Ong et al., 2006). Interestingly, whereas Notch1 ICD performs well on paired CSL binding sites, Notch3 ICD activity is more amenable to binding CSL motifs adjacent to binding sites for zinc-finger transcription factors (Ong et al., 2006). The spacing of multimerized binding sites within target genes is also important for activation (for a review, see Bray and Bernard, 2010). The ability of Notch ICDs to form dimers might also influence the repertoire of activated genes by restricting the response to dimeric CSL binding sites (Cave et al., 2005), although structural analysis of the dimeric Notch ICD complex suggests that a flexibility in spacer length can be accommodated (Arnett et al., 2010). Recently, it has been proposed that Notch ICD multimerization is an initial step in forming the active transcriptional complex (Vasquez-Del Carpio et al., 2011). Based on the notion that different Notch ICDs may activate at least partially distinct transcriptomes, one might expect at least partially distinct biological functions for the various ICDs. Thus, Notch2 ICD, but not Notch1 ICD, promotes tumor growth in xenografts in a medulloblastoma model (Fan et al., 2004), and overexpression of Notch1 ICD or of Notch3 ICD signaling generate distinct phenotypes in pancreas (Apelqvist et al., 1999; Hald et al., 2003), whereas they appear to have more similar functions in adult CNS progenitor cells (Tanigaki et al., 2001). Furthermore, the expression of Notch3 ICD, but not that of Notch1 or 2 ICD, during embryonic CNS development results in the formation of invasive gliomas (Pierfelice et al., 2011).

Proteins encoded by genes activated immediately downstream of Notch can feed back on the Notch transcriptional response and, in this way, modulate the signaling output. This has been demonstrated for c-Myc, which, together with Notch ICD-CSL, activates a set of genes not activated by Notch ICD alone (Palomero et al., 2006). In smooth muscle cells, Hey1 and Hey2 are activated by Notch and subsequently negatively regulate Notch-mediated transcription by blocking Notch ICD-CSL binding to DNA (Tang, Y. et al., 2008), which might affect the duration of the Notch signaling response. Similarly, the immediate Notch target gene Notch-regulated ankyrin repeat protein (Nrarp) feeds back to negatively regulate Notch, and at the same time activates Wnt signaling by stabilizing the Lymphoid enhancer-binding factor 1 (LEF1) protein (Ishitani et al., 2005; Phng et al., 2009). By contrast, the Notch target gene pin1 [protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1] positively reinforces Notch signaling by enhancing Notch receptor cleavage (Ishitani et al., 2005).

Cooperativity at the promoter level between Notch ICD-CSL and other transcription factors can also contribute to diversity in the Notch signaling output. Proneural bHLH proteins, for example, cooperate with Notch ICD-CSL in the regulation of HESR gene expression (Holmberg et al., 2008) and synergy between Notch ICD-CSL and GATA factors (Neves et al., 2007), NF-κB (Vilimas et al., 2007) and Twist (Bernard et al., 2010) has also been demonstrated. To what extent these genetic interactions require direct physical interactions between Notch ICD-CSL and the other factors remains to be established, but the spacing between the binding sites has, in some cases, been shown to be important (Swanson et al., 2010).

Despite the progress in this area, there are still unresolved questions as to how diversity is generated at the level of Notch ICD-CSL. It will be important to identify the factors that determine why CSL in some contexts remains bound to DNA in the absence of Notch and/or in other situations is recruited to DNA by Notch ICD. It also remains to be determined if the chromatin and epigenetic status can influence this choice. The establishment of genome-wide DNA-binding profiles for CSL and Notch ICD (through CSL) would be helpful in this regard, as would mapping studies that identify which co-repressors and co-activators are co-recruited in different cellular settings.

Since the number of key cellular signaling mechanisms is rather small, it is becoming increasingly appreciated that signaling mechanisms do not operate in isolation but that they are integrated into signaling networks. Interactions can be divided into different categories based on their mode of interaction. First, one pathway can be epistatic over another pathway, for example by regulating the expression of key components of the other pathway, thus controlling the activity of the other pathway indirectly. Second, pathways can converge at the level of the promoters of downstream genes, such that transcriptional regulators, activated by two (or more) pathways, bind to distinct promoter elements and jointly control the level of expression of downstream genes. Third, a direct interaction between core components in the pathways can lead to complex regulatory events in both pathways. For Notch signaling, all three of the above categories of interaction are observed (Fig. 4), and to exemplify this we discuss recent advances in our understanding of how Notch intersects with Wnt signaling, TGFβ/BMP signaling and with the cellular hypoxic response.

Interactions with the Wnt pathway

Wnt signaling, like Notch signaling, is important for cellular differentiation and homeostasis in a number of tissues, and several nodes of Wnt-Notch signaling interactions have been identified. Wnt signaling upregulates Jag1 transcription via β-catenin in the hair follicle (Estrach et al., 2006), increases Dll4 transcription during vascular remodeling (Corada et al., 2010) and induces Notch2 expression in colorectal cancer cells (Ungerback et al., 2011). During somite differentiation, β1-integrin activity controls both Wnt and Notch signaling, and activation of both signaling mechanisms is required for activation of the downstream gene cMESO1/mesp2 (Rallis et al., 2010). With regard to interaction between core components, Dishevelled (Dvl), an intracellular mediator of all Wnt signaling pathways described to date, binds to Notch ICD (Axelrod et al., 1996; Munoz-Descalzo et al., 2010), and interactions of Notch ICD with several components of the β-catenin destruction complex have also been described (Fig. 4). These include an interaction with Axin, which affects β-catenin stability (Hayward et al., 2006), the control of Notch trafficking by binding to Axin and adenomatous polyposis coli (APC) (Munoz-Descalzo et al., 2011), and GSK3β-mediated phosphorylation of Notch ICD (Espinosa et al., 2003; Foltz et al., 2002). Concomitantly, Notch controls the stability of Armadillo, the Drosophila homolog of β-catenin (Hayward et al., 2005; Munoz-Descalzo et al., 2011; Sanders et al., 2009).

Fig. 4.

Cross-talk between the Notch pathway and other signaling pathways. Key intracellular mediators of the Wnt, TGFβ/BMP and hypoxia pathways are depicted. Interactions between Notch ICD and key intracellular mediators in the other signaling mechanisms are indicated by dashed lines.

Fig. 4.

Cross-talk between the Notch pathway and other signaling pathways. Key intracellular mediators of the Wnt, TGFβ/BMP and hypoxia pathways are depicted. Interactions between Notch ICD and key intracellular mediators in the other signaling mechanisms are indicated by dashed lines.

Interactions between Notch and Wnt signaling are also context specific: β-catenin can bind Notch ICD in neural precursor cells (Shimizu et al., 2008) and can form complexes with Notch ICD-CSL on CSL binding sites in arterial cells, but it does not do so in venous endothelial cells (Yamamizu et al., 2010). Intriguingly, the Dll1 ICD has been shown to induce Wnt reporter activity and upregulate the expression of connective tissue growth factor (CTGF) (Bordonaro et al., 2011). MAML represents another nexus between Notch and Wnt signaling, and, in addition to its role in stabilizing Notch ICD-CSL interactions, MAML has now been shown to bind to both GSK3β (Saint Just Ribeiro et al., 2009) and β-catenin (Alves-Guerra et al., 2007). The binding of MAML to GSK3β (which is normally inhibited by active Wnt signaling) decreases MAML transcriptional activity (Saint Just Ribeiro et al., 2009), whereas MAML can act as a transcriptional co-activator for β-catenin, enhancing expression of the target genes cyclin D1 and c-Myc (Alves-Guerra et al., 2007). An unexpected level of cross-talk is also seen between soluble Frizzled-related proteins (sFRPs) and Notch signaling; sFRPs bind to ADAM10, downregulating its activity and thus inhibiting Notch signaling. This has consequences for retinal neurogenesis, a process known to be Notch dependent but Wnt independent (Esteve et al., 2011).

Interactions with TGFβ signaling pathways

Notch signaling also intersects with the TGFβ and BMP signaling pathways. In the canonical TGF signaling pathway, secreted dimeric cytokines, such as TGFβ, activin/inhibin and BMP, induce the assembly of a tetrameric complex of type I and type II transmembrane receptor serine/threonine kinases. Receptor II then phosphorylates and activates receptor I, which phosphorylates mothers against decapentaplegic (SMAD) transcription factors to activate transcription together with co-activators such as p300 (for a review, see Derynck and Zhang, 2003). TGFβ signaling also activates MAPK signaling cascades, RhoA-ROCK signaling and Ras signaling in a SMAD-independent manner (Derynck and Zhang, 2003).

A direct convergence between Notch and TGFβ/BMP signaling is evident in interactions of Notch ICD with SMADs (SMAD3 for TGFβ; SMAD1 for BMP) (Blokzijl et al., 2003; Dahlqvist et al., 2003; Itoh et al., 2004; Sun et al., 2005). During Notch-TGFβ cross-talk, TGFβ signaling enhances canonical Notch signaling, whereas the effect of Notch on TGFβ signaling is more multi-faceted. For example, Notch/TGFβ induction of Hey1 occurs at the expense of TGFβ-mediated induction of inhibitor of DNA binding 1 (Id1) (Itoh et al., 2004). TGFβ-mediated epithelial-to-mesenchymal transition (EMT) also requires functional Notch signaling in the developing heart (Timmerman et al., 2004) and in various epithelia (Niimi et al., 2007; Zavadil et al., 2004). During endothelial-to-mesenchymal transition (EndMT) in cardiac cushion morphogenesis, Notch signaling represses SMAD1 and SMAD2 expression, but enhances SMAD3 mRNA expression, and SMAD3 is recruited to both SMAD and CSL binding sites to orchestrate the downstream response (Fu et al., 2009). The interactions between Notch ICD and SMAD is receptor homolog-specific: Notch4 ICD, but not Notch1 or 2 ICD, was found to interact with phosphorylated SMAD2 and 3 in smooth muscle cells (Tang et al., 2010). Moreover, CSL co-immunoprecipitated with phosphorylated SMAD2 and 3 (Tang et al., 2010), supporting the notion that SMADs can be recruited to the Notch transcription complex. In cerebrovascular endothelial cells, SMADs bind to NICD and control the expression of N-cadherin by binding to CSL binding sites in the N-cadherin promoter (Li et al., 2011). Meanwhile, Dll1 ICD binds directly to SMADs and can occupy sequences within the CTGF promoter that contain SMAD binding elements (Bordonaro et al., 2011). During smooth muscle differentiation, TGFβ downregulates expression of Notch3 but upregulates Hes1 expression (Kennard et al., 2008), whereas in T-cells TGFβ requires active Notch signaling to induce a regulatory phenotype through Notch ICD/CSL/SMAD-mediated transcription of forkhead box P3 (Foxp3) (Samon et al., 2008).

Regulation of Notch signaling by hypoxia

A reduction in the level of oxygen activates the cellular hypoxic response, and Notch signaling is linked in several ways to the hypoxia pathway (Fig. 4). Certain aspects of the cellular hypoxic response, such as the control of myogenic differentiation, EMT and medulloblastoma precursor proliferation, require functional Notch signaling (Gustafsson et al., 2005; Pistollato et al., 2010; Sahlgren et al., 2008). Hypoxia also maintains a stem cell-like phenotype in colorectal tumor cells in a Notch-dependent manner (Yeung et al., 2011), and hypoxia resistance in Drosophila, acquired through genetic selection in low oxygen, can be overridden by blocking Notch signaling (Zhou et al., 2011). In pulmonary arterial hypertension, hypoxia upregulates Notch3 expression, which is important in disease development (Li et al., 2009). With regard to Notch and hypoxia cross-talk, hypoxia controls the expression of Notch ligands, and Dll1, Dll4 and Jag2 have been reported to be upregulated by low oxygen levels (Diez et al., 2007; Dong et al., 2011; Patel et al., 2005; Pietras et al., 2011; Sahlgren et al., 2008; Xing et al., 2011).

There are also genes that are synergistically controlled by both Notch and the cellular hypoxic response, and these contain binding sites for both Notch ICD and the key hypoxia transcriptional regulator hypoxia inducible factor 1 alpha (HIF1α) (Diez et al., 2007). Notch ICD has been shown to directly interact with two key components in the hypoxia pathway (Fig. 4): HIF1α and FIH. The binding of Notch ICD to HIF1α leads to the recruitment of HIF1α to Notch-responsive genes (Gustafsson et al., 2005; Sahlgren et al., 2008). Hypoxia also leads to the stabilization of Notch ICD (Bertout et al., 2009; Gustafsson et al., 2005; Sahlgren et al., 2008), but the underpinning mechanism for the increased Notch ICD half-life remains to be elucidated. In Drosophila crystal cells (a type of blood cell), Similar (Sima, encoded by the Drosophila ortholog of Hif1α), is expressed at high levels even in normoxia and activates Notch in a ligand-independent manner. Although this process does not result in the transcription of hypoxia target genes, it promotes hemocyte survival (Mukherjee et al., 2011). FIH serves as an asparagine hydroxylase not only for HIF1α, but also for Notch ICDs, with the exception of Notch4 ICD, as discussed in the previous section (Coleman et al., 2007; Wilkins et al., 2009; Zheng et al., 2008).

These examples illustrate that the signaling networks between Notch and other pathways are complex and that they are built on compound interactions between signaling pathways at multiple levels. The intersections are not only confined to Wnt, TGFβ/BMP and hypoxia, but are also elucidated for other pathways, such as the Shh pathway (Driver et al., 2008; Liu et al., 2003; Molnar et al., 2011; Morrow et al., 2009; Mukherjee et al., 2005) and NF-κB signaling (for a review, see Poellinger and Lendahl, 2008). A critical node of interaction with other signaling pathways appears to be the Notch ICD, but in some cases independent of any interaction with CSL. Signaling pathway cross-talk might, at least in part, underlie certain forms of non-canonical signaling, which require Notch ICD but not CSL [for a review of non-canonical Notch signaling, see Heitzler (Heitzler, 2010)].

In recent years, we have witnessed rapid progress in many fields of Notch research, both in identifying the cellular differentiation processes that are influenced by Notch signaling and in unraveling the molecular machinery that interprets cell context and converts this information into an appropriate signaling output. With these studies, we can begin to resolve the ostensible paradox of how simplicity in Notch pathway design is reconciled with the large number of cell fate decisions that are influenced by Notch. Importantly, these studies also highlight ways in which we can experimentally regulate Notch signaling in disease. In this area, sophisticated strategies have been developed to interfere with specific stages of Notch signaling, for example by developing MAML-interfering stapled α-helical peptides (Moellering et al., 2009) or antibodies that lock Notch receptors in the `OFF state' (Aste-Amezaga et al., 2010; Wu et al., 2010). Unfortunately, the long-term use of the latter might still yield unwanted side effects (Yan et al., 2010), and a lesson from this is that, although the rapid advances in basic science can be converted into potential therapies, we still need to learn more about the finer details of the Notch pathway and how it specifically operates in different spatial and temporal cellular contexts.

Work in our laboratories is supported by grants from the EU (EuroSyStem and NotchIT), the Swedish Cancer Society, the Swedish Research Council [DBRM, project grant, Strategic Research Center in Stem Cells and Regenerative Medicine (StratRegen)], Knut och ALice Wallenbergs Stiftelse (WIRM), VINNOVA (AZ-KI Gene), Karolinska Institutet (Distinguished Professor Award U.L.; BRECT and Theme Center for Stem cells and Regenerative Medicine). R.S. is supported by a Starting Grant from the European Research Council.

Acar
M.
,
Jafar-Nejad
H.
,
Takeuchi
H.
,
Rajan
A.
,
Ibrani
D.
,
Rana
N. A.
,
Pan
H.
,
Haltiwanger
R. S.
,
Bellen
H. J.
(
2008
).
Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling
.
Cell
132
,
247
-
258
.
Alagille
D.
,
Odievre
M.
,
Gautier
M.
,
Dommergues
J. P.
(
1975
).
Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur
.
J. Pediatr.
86
,
63
-
71
.
Alagille
D.
,
Estrada
A.
,
Hadchouel
M.
,
Gautier
M.
,
Odievre
M.
,
Dommergues
J. P.
(
1987
).
Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases
.
J. Pediatr.
110
,
195
-
200
.
Alberi
L.
,
Liu
S.
,
Wang
Y.
,
Badie
R.
,
Smith-Hicks
C.
,
Wu
J.
,
Pierfelice
T. J.
,
Abazyan
B.
,
Mattson
M. P.
,
Kuhl
D.
, et al. 
. (
2011
).
Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks
.
Neuron
69
,
437
-
444
.
Alves-Guerra
M. C.
,
Ronchini
C.
,
Capobianco
A. J.
(
2007
).
Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival
.
Cancer Res.
67
,
8690
-
8698
.
Aoyagi-Ikeda
K.
,
Maeno
T.
,
Matsui
H.
,
Ueno
M.
,
Hara
K.
,
Aoki
Y.
,
Aoki
F.
,
Shimizu
T.
,
Doi
H.
,
Kawai-Kowase
K.
, et al. 
. (
2011
).
Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-beta-Smad3 pathway
.
Am. J. Respir. Cell Mol. Biol.
45
,
136
-
144
.
Apelqvist
A.
,
Li
H.
,
Sommer
L.
,
Beatus
P.
,
Anderson
D. J.
,
Honjo
T.
,
Hrabe de Angelis
M.
,
Lendahl
U.
,
Edlund
H.
(
1999
).
Notch signalling controls pancreatic cell differentiation
.
Nature
400
,
877
-
881
.
Arnett
K. L.
,
Hass
M.
,
McArthur
D. G.
,
Ilagan
M. X.
,
Aster
J. C.
,
Kopan
R.
,
Blacklow
S. C.
(
2010
).
Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes
.
Nat. Struct. Mol. Biol.
17
,
1312
-
1317
.
Aste-Amezaga
M.
,
Zhang
N.
,
Lineberger
J. E.
,
Arnold
B. A.
,
Toner
T. J.
,
Gu
M.
,
Huang
L.
,
Vitelli
S.
,
Vo
K. T.
,
Haytko
P.
, et al. 
. (
2010
).
Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors
.
PLoS ONE
5
,
e9094
.
Axelrod
J. D.
,
Matsuno
K.
,
Artavanis-Tsakonas
S.
,
Perrimon
N.
(
1996
).
Interaction between Wingless and Notch signaling pathways mediated by Dishevelled
.
Science
271
,
1826
-
1832
.
Babaoglan
A. B.
,
O'Connor-Giles
K. M.
,
Mistry
H.
,
Schickedanz
A.
,
Wilson
B. A.
,
Skeath
J. B.
(
2009
).
Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions
.
Development
136
,
4089
-
4098
.
Baladron
V.
,
Ruiz-Hidalgo
M. J.
,
Nueda
M. L.
,
Diaz-Guerra
M. J.
,
Garcia-Ramirez
J. J.
,
Bonvini
E.
,
Gubina
E.
,
Laborda
J.
(
2005
).
dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats
.
Exp. Cell Res.
303
,
343
-
359
.
Bardin
A. J.
,
Perdigoto
C. N.
,
Southall
T. D.
,
Brand
A. H.
,
Schweisguth
F.
(
2010
).
Transcriptional control of stem cell maintenance in the Drosophila intestine
.
Development
137
,
705
-
714
.
Bargo
S.
,
Raafat
A.
,
McCurdy
D.
,
Amirjazil
I.
,
Shu
Y.
,
Traicoff
J.
,
Plant
J.
,
Vonderhaar
B. K.
,
Callahan
R.
(
2010
).
Transforming acidic coiled-coil protein-3 (Tacc3) acts as a negative regulator of Notch signaling through binding to CDC10/Ankyrin repeats
.
Biochem. Biophys. Res. Commun.
400
,
606
-
612
.
Barsoum
I. B.
,
Yao
H. H.
(
2010
).
Fetal Leydig cells: progenitor cell maintenance and differentiation
.
J. Androl.
31
,
11
-
15
.
Bauer
R. C.
,
Laney
A. O.
,
Smith
R.
,
Gerfen
J.
,
Morrissette
J. J.
,
Woyciechowski
S.
,
Garbarini
J.
,
Loomes
K. M.
,
Krantz
I. D.
,
Urban
Z.
, et al. 
. (
2010
).
Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis
.
Hum. Mutat.
31
,
594
-
601
.
Becam
I.
,
Fiuza
U. M.
,
Arias
A. M.
,
Milan
M.
(
2010
).
A role of receptor Notch in ligand cis-inhibition in Drosophila
.
Curr. Biol.
20
,
554
-
560
.
Benhra
N.
,
Vignaux
F.
,
Dussert
A.
,
Schweisguth
F.
,
Le Borgne
R.
(
2010
).
Neuralized promotes basal to apical transcytosis of delta in epithelial cells
.
Mol. Biol. Cell
21
,
2078
-
2086
.
Beres
B. J.
,
George
R.
,
Lougher
E. J.
,
Barton
M.
,
Verrelli
B. C.
,
McGlade
C. J.
,
Rawls
J. A.
,
Wilson-Rawls
J.
(
2011
).
Numb regulates Notch1, but not Notch3, during myogenesis
.
Mech. Dev.
128
,
247
-
257
.
Bernard
F.
,
Krejci
A.
,
Housden
B.
,
Adryan
B.
,
Bray
S. J.
(
2010
).
Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors
.
Development
137
,
2633
-
2642
.
Bertout
J. A.
,
Patel
S. A.
,
Fryer
B. H.
,
Durham
A. C.
,
Covello
K. L.
,
Olive
K. P.
,
Goldschmidt
M. H.
,
Simon
M. C.
(
2009
).
Heterozygosity for hypoxia inducible factor 1alpha decreases the incidence of thymic lymphomas in a p53 mutant mouse model
.
Cancer Res.
69
,
3213
-
3220
.
Bigas
A.
,
Robert-Moreno
A.
,
Espinosa
L.
(
2010
).
The Notch pathway in the developing hematopoietic system
.
Int. J. Dev. Biol.
54
,
1175
-
1188
.
Blokzijl
A.
,
Dahlqvist
C.
,
Reissmann
E.
,
Falk
A.
,
Moliner
A.
,
Lendahl
U.
,
Ibanez
C. F.
(
2003
).
Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3
.
J. Cell Biol.
163
,
723
-
728
.
Bonafe
L.
,
Giunta
C.
,
Gassner
M.
,
Steinmann
B.
,
Superti-Furga
A.
(
2003
).
A cluster of autosomal recessive spondylocostal dysostosis caused by three newly identified DLL3 mutations segregating in a small village
.
Clin. Genet.
64
,
28
-
35
.
Bordonaro
M.
,
Tewari
S.
,
Atamna
W.
,
Lazarova
D. L.
(
2011
).
The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways
.
Exp. Cell Res.
317
,
1368
-
1381
.
Bozkulak
E. C.
,
Weinmaster
G.
(
2009
).
Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling
.
Mol. Cell. Biol.
29
,
5679
-
5695
.
Bray
S.
,
Bernard
F.
(
2010
).
Notch targets and their regulation
.
Curr. Top. Dev. Biol.
92
,
253
-
275
.
Brou
C.
,
Logeat
F.
,
Gupta
N.
,
Bessia
C.
,
LeBail
O.
,
Doedens
J. R.
,
Cumano
A.
,
Roux
P.
,
Black
R. A.
,
Israel
A.
(
2000
).
A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE
.
Mol. Cell
5
,
207
-
216
.
Buas
M. F.
,
Kabak
S.
,
Kadesch
T.
(
2009
).
Inhibition of myogenesis by Notch: evidence for multiple pathways
.
J. Cell. Physiol.
218
,
84
-
93
.
Bulman
M. P.
,
Kusumi
K.
,
Frayling
T. M.
,
McKeown
C.
,
Garrett
C.
,
Lander
E. S.
,
Krumlauf
R.
,
Hattersley
A. T.
,
Ellard
S.
,
Turnpenny
P. D.
(
2000
).
Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis
.
Nat. Genet.
24
,
438
-
441
.
Buono
K. D.
,
Robinson
G. W.
,
Martin
C.
,
Shi
S.
,
Stanley
P.
,
Tanigaki
K.
,
Honjo
T.
,
Hennighausen
L.
(
2006
).
The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy
.
Dev. Biol.
293
,
565
-
580
.
Canault
M.
,
Certel
K.
,
Schatzberg
D.
,
Wagner
D. D.
,
Hynes
R. O.
(
2010
).
The lack of ADAM17 activity during embryonic development causes hemorrhage and impairs vessel formation
.
PLoS ONE
5
,
e13433
.
Carre
A.
,
Rachdi
L.
,
Tron
E.
,
Richard
B.
,
Castanet
M.
,
Schlumberger
M.
,
Bidart
J. M.
,
Szinnai
G.
,
Polak
M.
(
2011
).
Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development
.
PLoS ONE
6
,
e16752
.
Casey
L. M.
,
Lan
Y.
,
Cho
E. S.
,
Maltby
K. M.
,
Gridley
T.
,
Jiang
R.
(
2006
).
Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development
.
Dev. Dyn.
235
,
1830
-
1844
.
Castro
B.
,
Barolo
S.
,
Bailey
A. M.
,
Posakony
J. W.
(
2005
).
Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by Suppressor of Hairless
.
Development
132
,
3333
-
3344
.
Cave
J. W.
,
Loh
F.
,
Surpris
J. W.
,
Xia
L.
,
Caudy
M. A.
(
2005
).
A DNA transcription code for cell-specific gene activation by notch signaling
.
Curr. Biol.
15
,
94
-
104
.
Cayouette
M.
,
Raff
M.
(
2002
).
Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals
.
Nat. Neurosci.
5
,
1265
-
1269
.
Chadwick
N.
,
Zeef
L.
,
Portillo
V.
,
Fennessy
C.
,
Warrander
F.
,
Hoyle
S.
,
Buckle
A. M.
(
2009
).
Identification of novel Notch target genes in T cell leukaemia
.
Mol. Cancer
8
,
35
.
Chapman
G.
,
Liu
L.
,
Sahlgren
C.
,
Dahlqvist
C.
,
Lendahl
U.
(
2006
).
High levels of Notch signaling down-regulate Numb and Numblike
.
J. Cell Biol.
175
,
535
-
540
.
Chapman
G.
,
Sparrow
D. B.
,
Kremmer
E.
,
Dunwoodie
S. L.
(
2011
).
Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis
.
Hum. Mol. Genet.
20
,
905
-
916
.
Chastagner
P.
,
Israel
A.
,
Brou
C.
(
2008
).
AIP4/Itch regulates Notch receptor degradation in the absence of ligand
.
PLoS ONE
3
,
e2735
.
Chen
F.
,
Hasegawa
H.
,
Schmitt-Ulms
G.
,
Kawarai
T.
,
Bohm
C.
,
Katayama
T.
,
Gu
Y.
,
Sanjo
N.
,
Glista
M.
,
Rogaeva
E.
, et al. 
. (
2006
).
TMP21 is a presenilin complex component that modulates [gamma]-secretase but not [epsiv]-secretase activity
.
Nature
440
,
1208
-
1212
.
Cheng
H. T.
,
Kim
M.
,
Valerius
M. T.
,
Surendran
K.
,
Schuster-Gossler
K.
,
Gossler
A.
,
McMahon
A. P.
,
Kopan
R.
(
2007
).
Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron
.
Development
134
,
801
-
811
.
Childress
J. L.
,
Acar
M.
,
Tao
C.
,
Halder
G.
(
2006
).
Lethal giant discs, a novel C2-domain protein, restricts notch activation during endocytosis
.
Curr. Biol.
16
,
2228
-
2233
.
Cohen
B.
,
Shimizu
M.
,
Izrailit
J.
,
Ng
N. F.
,
Buchman
Y.
,
Pan
J. G.
,
Dering
J.
,
Reedijk
M.
(
2010
).
Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer
.
Breast Cancer Res. Treat.
123
,
113
-
124
.
Cohen
M.
,
Georgiou
M.
,
Stevenson
N. L.
,
Miodownik
M.
,
Baum
B.
(
2010
).
Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition
.
Dev. Cell
19
,
78
-
89
.
Colaluca
I. N.
,
Tosoni
D.
,
Nuciforo
P.
,
Senic-Matuglia
F.
,
Galimberti
V.
,
Viale
G.
,
Pece
S.
,
Di Fiore
P. P.
(
2008
).
NUMB controls p53 tumour suppressor activity
.
Nature
451
,
76
-
80
.
Coleman
M. L.
,
McDonough
M. A.
,
Hewitson
K. S.
,
Coles
C.
,
Mecinovic
J.
,
Edelmann
M.
,
Cook
K. M.
,
Cockman
M. E.
,
Lancaster
D. E.
,
Kessler
B. M.
, et al. 
. (
2007
).
Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor
.
J. Biol. Chem.
282
,
24027
-
24038
.
Colliton
R. P.
,
Bason
L.
,
Lu
F. M.
,
Piccoli
D. A.
,
Krantz
I. D.
,
Spinner
N. B.
(
2001
).
Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients
.
Hum. Mutat.
17
,
151
-
152
.
Conkright
M. D.
,
Canettieri
G.
,
Screaton
R.
,
Guzman
E.
,
Miraglia
L.
,
Hogenesch
J. B.
,
Montminy
M.
(
2003
).
TORCs: transducers of regulated CREB activity
.
Mol. Cell
12
,
413
-
423
.
Corada
M.
,
Nyqvist
D.
,
Orsenigo
F.
,
Caprini
A.
,
Giampietro
C.
,
Taketo
M. M.
,
Iruela-Arispe
M. L.
,
Adams
R. H.
,
Dejana
E.
(
2010
).
The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling
.
Dev. Cell
18
,
938
-
49
.
Cordle
J.
,
Johnson
S.
,
Tay
J. Z.
,
Roversi
P.
,
Wilkin
M. B.
,
de Madrid
B. H.
,
Shimizu
H.
,
Jensen
S.
,
Whiteman
P.
,
Jin
B.
, et al. 
. (
2008
).
A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition
.
Nat. Struct. Mol. Biol.
15
,
849
-
857
.
Cornell
M.
,
Evans
D. A.
,
Mann
R.
,
Fostier
M.
,
Flasza
M.
,
Monthatong
M.
,
Artavanis-Tsakonas
S.
,
Baron
M.
(
1999
).
The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase
.
Genetics
152
,
567
-
576
.
Cotanche
D. A.
,
Kaiser
C. L.
(
2010
).
Hair cell fate decisions in cochlear development and regeneration
.
Hear. Res.
266
,
18
-
25
.
Coumailleau
F.
,
Furthauer
M.
,
Knoblich
J. A.
,
Gonzalez-Gaitan
M.
(
2009
).
Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division
.
Nature
458
,
1051
-
1055
.
Crosnier
C.
,
Driancourt
C.
,
Raynaud
N.
,
Dhorne-Pollet
S.
,
Pollet
N.
,
Bernard
O.
,
Hadchouel
M.
,
Meunier-Rotival
M.
(
1999
).
Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome
.
Gastroenterology
116
,
1141
-
1148
.
Crosnier
C.
,
Driancourt
C.
,
Raynaud
N.
,
Hadchouel
M.
,
Meunier-Rotival
M.
(
2001
).
Fifteen novel mutations in the JAGGED1 gene of patients with Alagille syndrome
.
Hum. Mutat.
17
,
72
-
73
.
D'Souza
B.
,
Meloty-Kapella
L.
,
Weinmaster
G.
(
2010
).
Canonical and non-canonical Notch ligands
.
Curr. Top. Dev. Biol.
92
,
73
-
129
.
Dahlqvist
C.
,
Blokzijl
A.
,
Chapman
G.
,
Falk
A.
,
Dannaeus
K.
,
Ibanez
C. F.
,
Lendahl
U.
(
2003
).
Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation
.
Development
130
,
6089
-
6099
.
Das
D.
,
Lanner
F.
,
Main
H.
,
Andersson
E. R.
,
Bergmann
O.
,
Sahlgren
C.
,
Heldring
N.
,
Hermanson
O.
,
Hansson
E. M.
,
Lendahl
U.
(
2010
).
Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells
.
Dev. Biol.
348
,
153
-
166
.
Davis
S. W.
,
Castinetti
F.
,
Carvalho
L. R.
,
Ellsworth
B. S.
,
Potok
M. A.
,
Lyons
R. H.
,
Brinkmeier
M. L.
,
Raetzman
L. T.
,
Carninci
P.
,
Mortensen
A. H.
, et al. 
. (
2010
).
Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes
.
Mol. Cell. Endocrinol.
323
,
4
-
19
.
de Celis
J. F.
,
Bray
S.
(
1997
).
Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing
.
Development
124
,
3241
-
3251
.
De Joussineau
C.
,
Soule
J.
,
Martin
M.
,
Anguille
C.
,
Montcourrier
P.
,
Alexandre
D.
(
2003
).
Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila
.
Nature
426
,
555
-
559
.
del Alamo
D.
,
Rouault
H.
,
Schweisguth
F.
(
2011
).
Mechanism and significance of cis-inhibition in Notch signalling
.
Curr. Biol.
21
,
R40
-
R47
.
Del Bene
F.
,
Wehman
A. M.
,
Link
B. A.
,
Baier
H.
(
2008
).
Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient
.
Cell
134
,
1055
-
1065
.
Derynck
R.
,
Zhang
Y. E.
(
2003
).
Smad-dependent and Smad-independent pathways in TGF-beta family signalling
.
Nature
425
,
577
-
584
.
Di Marcotullio
L.
,
Ferretti
E.
,
Greco
A.
,
De Smaele
E.
,
Po
A.
,
Sico
M. A.
,
Alimandi
M.
,
Giannini
G.
,
Maroder
M.
,
Screpanti
I.
, et al. 
. (
2006
).
Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination
.
Nat. Cell Biol.
8
,
1415
-
1423
.
Diederich
R. J.
,
Matsuno
K.
,
Hing
H.
,
Artavanis-Tsakonas
S.
(
1994
).
Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway
.
Development
120
,
473
-
481
.
Diez
H.
,
Fischer
A.
,
Winkler
A.
,
Hu
C. J.
,
Hatzopoulos
A. K.
,
Breier
G.
,
Gessler
M.
(
2007
).
Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate
.
Exp. Cell Res.
313
,
1
-
9
.
Dohda
T.
,
Maljukova
A.
,
Liu
L.
,
Heyman
M.
,
Grander
D.
,
Brodin
D.
,
Sangfelt
O.
,
Lendahl
U.
(
2007
).
Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines
.
Exp. Cell Res.
313
,
3141
-
3152
.
Dong
X.
,
Wang
Y. S.
,
Dou
G. R.
,
Hou
H. Y.
,
Shi
Y. Y.
,
Zhang
R.
,
Ma
K.
,
Wu
L.
,
Yao
L. B.
,
Cai
Y.
, et al. 
. (
2011
).
Influence of Dll4 via HIF-1alpha-VEGF signaling on the angiogenesis of choroidal neovascularization under hypoxic conditions
.
PLoS ONE
6
,
e18481
.
Driver
E. C.
,
Pryor
S. P.
,
Hill
P.
,
Turner
J.
,
Ruther
U.
,
Biesecker
L. G.
,
Griffith
A. J.
,
Kelley
M. W.
(
2008
).
Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans
.
J. Neurosci.
28
,
7350
-
7358
.
Dunwoodie
S. L.
(
2009
).
The role of Notch in patterning the human vertebral column
.
Curr. Opin. Genet. Dev.
19
,
329
-
337
.
Dunwoodie
S. L.
,
Henrique
D.
,
Harrison
S. M.
,
Beddington
R. S.
(
1997
).
Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo
.
Development
124
,
3065
-
3076
.
Eldadah
Z. A.
,
Hamosh
A.
,
Biery
N. J.
,
Montgomery
R. A.
,
Duke
M.
,
Elkins
R.
,
Dietz
H. C.
(
2001
).
Familial Tetralogy of Fallot caused by mutation in the jagged1 gene
.
Hum. Mol. Genet.
10
,
163
-
169
.
Emery
G.
,
Hutterer
A.
,
Berdnik
D.
,
Mayer
B.
,
Wirtz-Peitz
F.
,
Gaitan
M. G.
,
Knoblich
J. A.
(
2005
).
Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system
.
Cell
122
,
763
-
773
.
Enlund
F.
,
Behboudi
A.
,
Andren
Y.
,
Oberg
C.
,
Lendahl
U.
,
Mark
J.
,
Stenman
G.
(
2004
).
Altered Notch signaling resulting from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin's tumors
.
Exp. Cell Res.
292
,
21
-
28
.
Erbilgin
Y.
,
Sayitoglu
M.
,
Hatirnaz
O.
,
Dogru
O.
,
Akcay
A.
,
Tuysuz
G.
,
Celkan
T.
,
Aydogan
G.
,
Salcioglu
Z.
,
Timur
C.
, et al. 
. (
2010
).
Prognostic significance of NOTCH1 and FBXW7 mutations in pediatric T-ALL
.
Dis. Markers
28
,
353
-
360
.
Espinosa
L.
,
Ingles-Esteve
J.
,
Aguilera
C.
,
Bigas
A.
(
2003
).
Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways
.
J. Biol. Chem.
278
,
32227
-
32235
.
Esteve
P.
,
Sandonis
A.
,
Cardozo
M.
,
Malapeira
J.
,
Ibanez
C.
,
Crespo
I.
,
Marcos
S.
,
Gonzalez-Garcia
S.
,
Toribio
M. L.
,
Arribas
J.
, et al. 
. (
2011
).
SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis
.
Nat. Neurosci.
14
,
562
-
569
.
Estrach
S.
,
Ambler
C. A.
,
Lo Celso
C.
,
Hozumi
K.
,
Watt
F. M.
(
2006
).
Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis
.
Development
133
,
4427
-
4438
.
Fan
X.
,
Mikolaenko
I.
,
Elhassan
I.
,
Ni
X.
,
Wang
Y.
,
Ball
D.
,
Brat
D. J.
,
Perry
A.
,
Eberhart
C. G.
(
2004
).
Notch1 and notch2 have opposite effects on embryonal brain tumor growth
.
Cancer Res.
64
,
7787
-
7793
.
Fanto
M.
,
Mlodzik
M.
(
1999
).
Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye
.
Nature
397
,
523
-
526
.
Fernandez-Valdivia
R.
,
Takeuchi
H.
,
Samarghandi
A.
,
Lopez
M.
,
Leonardi
J.
,
Haltiwanger
R. S.
,
Jafar-Nejad
H.
(
2011
).
Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi
.
Development
138
,
1925
-
1934
.
Fiuza
U. M.
,
Klein
T.
,
Martinez Arias
A.
,
Hayward
P.
(
2010
).
Mechanisms of ligand-mediated inhibition in Notch signaling activity in Drosophila
.
Dev. Dyn.
239
,
798
-
805
.
Foltz
D. R.
,
Santiago
M. C.
,
Berechid
B. E.
,
Nye
J. S.
(
2002
).
Glycogen synthase kinase-3beta modulates notch signaling and stability
.
Curr. Biol.
12
,
1006
-
1011
.
Francis
J. C.
,
Radtke
F.
,
Logan
M. P.
(
2005
).
Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud
.
Dev. Dyn.
234
,
1006
-
1015
.
Friedmann
D. R.
,
Kovall
R. A.
(
2010
).
Thermodynamic and structural insights into CSL-DNA complexes
.
Protein Sci.
19
,
34
-
46
.
Friedmann
D. R.
,
Wilson
J. J.
,
Kovall
R. A.
(
2008
).
RAM-induced allostery facilitates assembly of a notch pathway active transcription complex
.
J. Biol. Chem.
283
,
14781
-
14791
.
Fryer
C. J.
,
White
J. B.
,
Jones
K. A.
(
2004
).
Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover
.
Mol. Cell
16
,
509
-
520
.
Fu
Y.
,
Chang
A.
,
Chang
L.
,
Niessen
K.
,
Eapen
S.
,
Setiadi
A.
,
Karsan
A.
(
2009
).
Differential regulation of transforming growth factor beta signaling pathways by Notch in human endothelial cells
.
J. Biol. Chem.
284
,
19452
-
19462
.
Fuwa
T. J.
,
Hori
K.
,
Sasamura
T.
,
Higgs
J.
,
Baron
M.
,
Matsuno
K.
(
2006
).
The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila
.
Mol. Genet. Genomics
275
,
251
-
263
.
Garg
V.
(
2006
).
Molecular genetics of aortic valve disease
.
Curr. Opin. Cardiol.
21
,
180
-
184
.
Gasperowicz
M.
,
Otto
F.
(
2008
).
The notch signalling pathway in the development of the mouse placenta
.
Placenta
29
,
651
-
659
.
Gazave
E.
,
Lapebie
P.
,
Richards
G. S.
,
Brunet
F.
,
Ereskovsky
A. V.
,
Degnan
B. M.
,
Borchiellini
C.
,
Vervoort
M.
,
Renard
E.
(
2009
).
Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes
.
BMC Evol. Biol.
9
,
249
.
Geffers
I.
,
Serth
K.
,
Chapman
G.
,
Jaekel
R.
,
Schuster-Gossler
K.
,
Cordes
R.
,
Sparrow
D. B.
,
Kremmer
E.
,
Dunwoodie
S. L.
,
Klein
T.
, et al. 
. (
2007
).
Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo
.
J. Cell Biol.
178
,
465
-
476
.
Geisler
F.
,
Nagl
F.
,
Mazur
P. K.
,
Lee
M.
,
Zimber-Strobl
U.
,
Strobl
L. J.
,
Radtke
F.
,
Schmid
R. M.
,
Siveke
J. T.
(
2008
).
Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice
.
Hepatology
48
,
607
-
616
.
Ghabrial
A. S.
,
Krasnow
M. A.
(
2006
).
Social interactions among epithelial cells during tracheal branching morphogenesis
.
Nature
441
,
746
-
749
.
Glittenberg
M.
,
Pitsouli
C.
,
Garvey
C.
,
Delidakis
C.
,
Bray
S.
(
2006
).
Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis
.
EMBO J.
25
,
4697
-
4706
.
Gonczy
P.
(
2008
).
Mechanisms of asymmetric cell division: flies and worms pave the way
.
Nat. Rev. Mol. Cell Biol.
9
,
355
-
366
.
Gridley
T.
(
2010
).
Notch signaling in the vasculature
.
Curr. Top. Dev. Biol.
92
,
277
-
309
.
Guarani
V.
,
Deflorian
G.
,
Franco
C. A.
,
Kruger
M.
,
Phng
L. K.
,
Bentley
K.
,
Toussaint
L.
,
Dequiedt
F.
,
Mostoslavsky
R.
,
Schmidt
M. H.
, et al. 
. (
2011
).
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
.
Nature
473
,
234
-
238
.
Gupta-Rossi
N.
,
Le Bail
O.
,
Gonen
H.
,
Brou
C.
,
Logeat
F.
,
Six
E.
,
Ciechanover
A.
,
Israel
A.
(
2001
).
Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor
.
J. Biol. Chem.
276
,
34371
-
34378
.
Gupta-Rossi
N.
,
Six
E.
,
LeBail
O.
,
Logeat
F.
,
Chastagner
P.
,
Olry
A.
,
Israel
A.
,
Brou
C.
(
2004
).
Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor
.
J. Cell Biol.
166
,
73
-
83
.
Gustafsson
M. V.
,
Zheng
X.
,
Pereira
T.
,
Gradin
K.
,
Jin
S.
,
Lundkvist
J.
,
Ruas
J. L.
,
Poellinger
L.
,
Lendahl
U.
,
Bondesson
M.
(
2005
).
Hypoxia requires notch signaling to maintain the undifferentiated cell state
.
Dev. Cell
9
,
617
-
628
.
Hald
J.
,
Hjorth
J. P.
,
German
M. S.
,
Madsen
O. D.
,
Serup
P.
,
Jensen
J.
(
2003
).
Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development
.
Dev. Biol.
260
,
426
-
437
.
Hansson
E. M.
,
Stromberg
K.
,
Bergstedt
S.
,
Yu
G.
,
Naslund
J.
,
Lundkvist
J.
,
Lendahl
U.
(
2005
).
Aph-1 interacts at the cell surface with proteins in the active gamma-secretase complex and membrane-tethered Notch
.
J. Neurochem.
92
,
1010
-
1020
.
Hansson
E. M.
,
Lanner
F.
,
Das
D.
,
Mutvei
A.
,
Marklund
U.
,
Ericson
J.
,
Farnebo
F.
,
Stumm
G.
,
Stenmark
H.
,
Andersson
E. R.
, et al. 
. (
2010
).
Control of Notch-ligand endocytosis by ligand-receptor interaction
.
J. Cell Sci.
123
,
2931
-
2942
.
Hayashi
T.
,
Kageyama
Y.
,
Ishizaka
K.
,
Xia
G.
,
Kihara
K.
,
Oshima
H.
(
2001
).
Requirement of Notch 1 and its ligand jagged 2 expressions for spermatogenesis in rat and human testes
.
J. Androl.
22
,
999
-
1011
.
Hayward
P.
,
Brennan
K.
,
Sanders
P.
,
Balayo
T.
,
DasGupta
R.
,
Perrimon
N.
,
Martinez Arias
A.
(
2005
).
Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity
.
Development
132
,
1819
-
1830
.
Hayward
P.
,
Balayo
T.
,
Martinez Arias
A.
(
2006
).
Notch synergizes with axin to regulate the activity of armadillo in Drosophila
.
Dev. Dyn.
235
,
2656
-
2666
.
He
G.
,
Luo
W.
,
Li
P.
,
Remmers
C.
,
Netzer
W. J.
,
Hendrick
J.
,
Bettayeb
K.
,
Flajolet
M.
,
Gorelick
F.
,
Wennogle
L. P.
, et al. 
. (
2010
).
Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease
.
Nature
467
,
95
-
98
.
Heath
J. K.
(
2010
).
Transcriptional networks and signaling pathways that govern vertebrate intestinal development
.
Curr. Top. Dev. Biol.
90
,
159
-
192
.
Heitzler
P.
(
2010
).
Biodiversity and noncanonical Notch signaling
.
Curr. Top. Dev. Biol.
92
,
457
-
481
.
Heritage
M. L.
,
MacMillan
J. C.
,
Colliton
R. P.
,
Genin
A.
,
Spinner
N. B.
,
Anderson
G. J.
(
2000
).
Jagged1 (JAG1) mutation detection in an Australian Alagille syndrome population
.
Hum. Mutat.
16
,
408
-
416
.
Heritage
M. L.
,
MacMillan
J. C.
,
Anderson
G. J.
(
2002
).
DHPLC mutation analysis of Jagged1 (JAG1) reveals six novel mutations in Australian alagille syndrome patients
.
Hum. Mutat.
20
,
481
.
Hicks
C.
,
Johnston
S. H.
,
diSibio
G.
,
Collazo
A.
,
Vogt
T. F.
,
Weinmaster
G.
(
2000
).
Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2
.
Nat. Cell Biol.
2
,
515
-
520
.
Holmberg
J.
,
Hansson
E.
,
Malewicz
M.
,
Sandberg
M.
,
Perlmann
T.
,
Lendahl
U.
,
Muhr
J.
(
2008
).
SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation
.
Development
135
,
1843
-
1851
.
Hooper
C.
,
Tavassoli
M.
,
Chapple
J. P.
,
Uwanogho
D.
,
Goodyear
R.
,
Melino
G.
,
Lovestone
S.
,
Killick
R.
(
2006
).
TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones
.
J. Neurochem.
99
,
989
-
999
.
Hori
K.
,
Fostier
M.
,
Ito
M.
,
Fuwa
T. J.
,
Go
M. J.
,
Okano
H.
,
Baron
M.
,
Matsuno
K.
(
2004
).
Drosophila deltex mediates suppressor of Hairless-independent and late-endosomal activation of Notch signaling
.
Development
131
,
5527
-
5537
.
Hutterer
A.
,
Knoblich
J. A.
(
2005
).
Numb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs
.
EMBO Rep.
6
,
836
-
842
.
Ingles-Esteve
J.
,
Espinosa
L.
,
Milner
L. A.
,
Caelles
C.
,
Bigas
A.
(
2001
).
Phosphorylation of Ser2078 modulates the Notch2 function in 32D cell differentiation
.
J. Biol. Chem.
276
,
44873
-
44880
.
Irvine
K. D.
,
Wieschaus
E.
(
1994
).
fringe, a Boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development
.
Cell
79
,
595
-
606
.
Ishitani
T.
,
Matsumoto
K.
,
Chitnis
A. B.
,
Itoh
M.
(
2005
).
Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability
.
Nat. Cell Biol.
7
,
1106
-
1112
.
Itoh
F.
,
Itoh
S.
,
Goumans
M. J.
,
Valdimarsdottir
G.
,
Iso
T.
,
Dotto
G. P.
,
Hamamori
Y.
,
Kedes
L.
,
Kato
M.
,
ten Dijke
P.
(
2004
).
Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells
.
EMBO J.
23
,
541
-
551
.
Itoh
M.
,
Kim
C. H.
,
Palardy
G.
,
Oda
T.
,
Jiang
Y. J.
,
Maust
D.
,
Yeo
S. Y.
,
Lorick
K.
,
Wright
G. J.
,
Ariza-McNaughton
L.
, et al. 
. (
2003
).
Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta
.
Dev. Cell
4
,
67
-
82
.
Ivo
R.
,
Schulze
T. G.
,
Schumacher
J.
,
Kesper
K.
,
Muller
D. J.
,
Kremer
I.
,
Dobrusin
M.
,
Mujaheed
M.
,
Murad
I.
,
Blanaru
M.
, et al. 
. (
2006
).
No evidence for association between NOTCH4 and schizophrenia in a large family-based and case-control association analysis
.
Psychiatr. Genet.
16
,
197
-
203
.
Jaekel
R.
,
Klein
T.
(
2006
).
The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking
.
Dev. Cell
11
,
655
-
669
.
Jafar-Nejad
H.
,
Andrews
H. K.
,
Acar
M.
,
Bayat
V.
,
Wirtz-Peitz
F.
,
Mehta
S. Q.
,
Knoblich
J. A.
,
Bellen
H. J.
(
2005
).
Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors
.
Dev. Cell
9
,
351
-
363
.
Jain
R.
,
Rentschler
S.
,
Epstein
J. A.
(
2010
).
Notch and cardiac outflow tract development
.
Ann. N. Y. Acad. Sci.
1188
,
184
-
190
.
Jeffries
S.
,
Robbins
D. J.
,
Capobianco
A. J.
(
2002
).
Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line
.
Mol. Cell. Biol.
22
,
3927
-
3941
.
Jia
J.
,
Lin
M.
,
Zhang
L.
,
York
J. P.
,
Zhang
P.
(
2007
).
The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression
.
Mol. Cell. Biol.
27
,
7236
-
7247
.
Jiang
R.
,
Lan
Y.
,
Chapman
H. D.
,
Shawber
C.
,
Norton
C. R.
,
Serreze
D. V.
,
Weinmaster
G.
,
Gridley
T.
(
1998
).
Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice
.
Genes Dev.
12
,
1046
-
1057
.
Jin
S.
,
Hansson
E. M.
,
Tikka
S.
,
Lanner
F.
,
Sahlgren
C.
,
Farnebo
F.
,
Baumann
M.
,
Kalimo
H.
,
Lendahl
U.
(
2008
).
Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells
.
Circ. Res.
102
,
1483
-
1491
.
Jorissen
E.
,
De Strooper
B.
(
2010
).
Gamma-secretase and the intramembrane proteolysis of Notch
.
Curr. Top. Dev. Biol.
92
,
201
-
230
.
Joshi
I.
,
Minter
L. M.
,
Telfer
J.
,
Demarest
R. M.
,
Capobianco
A. J.
,
Aster
J. C.
,
Sicinski
P.
,
Fauq
A.
,
Golde
T. E.
,
Osborne
B. A.
(
2009
).
Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases
.
Blood
113
,
1689
-
1698
.
Joutel
A.
,
Corpechot
C.
,
Ducros
A.
,
Vahedi
K.
,
Chabriat
H.
,
Mouton
P.
,
Alamowitch
S.
,
Domenga
V.
,
Cecillion
M.
,
Marechal
E.
, et al. 
. (
1997a
).
Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia
.
Ann. N. Y. Acad. Sci.
826
,
213
-
217
.
Joutel
A.
,
Vahedi
K.
,
Corpechot
C.
,
Troesch
A.
,
Chabriat
H.
,
Vayssiere
C.
,
Cruaud
C.
,
Maciazek
J.
,
Weissenbach
J.
,
Bousser
M. G.
, et al. 
. (
1997b
).
Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients
.
Lancet
350
,
1511
-
1515
.
Joutel
A.
,
Monet
M.
,
Domenga
V.
,
Riant
F.
,
Tournier-Lasserve
E.
(
2004
).
Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling pathway
.
Am. J. Hum. Genet.
74
,
338
-
347
.
Kaether
C.
,
Schmitt
S.
,
Willem
M.
,
Haass
C.
(
2006
).
Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface
.
Traffic
7
,
408
-
415
.
Kageyama
R.
,
Ohtsuka
T.
,
Shimojo
H.
,
Imayoshi
I.
(
2009
).
Dynamic regulation of Notch signaling in neural progenitor cells
.
Curr. Opin. Cell Biol.
21
,
733
-
740
.
Kageyama
R.
,
Niwa
Y.
,
Shimojo
H.
,
Kobayashi
T.
,
Ohtsuka
T.
(
2010
).
Ultradian oscillations in Notch signaling regulate dynamic biological events
.
Curr. Top. Dev. Biol.
92
,
311
-
331
.
Karaczyn
A.
,
Bani-Yaghoub
M.
,
Tremblay
R.
,
Kubu
C.
,
Cowling
R.
,
Adams
T. L.
,
Prudovsky
I.
,
Spicer
D.
,
Friesel
R.
,
Vary
C.
, et al. 
. (
2010
).
Two novel human NUMB isoforms provide a potential link between development and cancer
.
Neural Dev.
5
,
31
.
Kato
T. M.
,
Kawaguchi
A.
,
Kosodo
Y.
,
Niwa
H.
,
Matsuzaki
F.
(
2010
).
Lunatic fringe potentiates Notch signaling in the developing brain
.
Mol. Cell. Neurosci.
45
,
12
-
25
.
Kennard
S.
,
Liu
H.
,
Lilly
B.
(
2008
).
Transforming growth factor-beta (TGF-1) down-regulates Notch3 in fibroblasts to promote smooth muscle gene expression
.
J. Biol. Chem.
283
,
1324
-
1333
.
Kiernan
A. E.
,
Xu
J.
,
Gridley
T.
(
2006
).
The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear
.
PLoS Genet.
2
,
e4
.
Kim
W.
,
Shin
Y. K.
,
Kim
B. J.
,
Egan
J. M.
(
2010
).
Notch signaling in pancreatic endocrine cell and diabetes
.
Biochem. Biophys. Res. Commun.
392
,
247
-
251
.
Koelzer
S.
,
Klein
T.
(
2006
).
Regulation of expression of Vg and establishment of the dorsoventral compartment boundary in the wing imaginal disc by Suppressor of Hairless
.
Dev. Biol.
289
,
77
-
90
.
Kolev
V.
,
Kacer
D.
,
Trifonova
R.
,
Small
D.
,
Duarte
M.
,
Soldi
R.
,
Graziani
I.
,
Sideleva
O.
,
Larman
B.
,
Maciag
T.
, et al. 
. (
2005
).
The intracellular domain of Notch ligand Delta1 induces cell growth arrest
.
FEBS Lett.
579
,
5798
-
5802
.
Kovall
R. A.
,
Blacklow
S. C.
(
2010
).
Mechanistic insights into Notch receptor signaling from structural and biochemical studies
.
Curr. Top. Dev. Biol.
92
,
31
-
71
.
Krantz
I. D.
,
Colliton
R. P.
,
Genin
A.
,
Rand
E. B.
,
Li
L.
,
Piccoli
D. A.
,
Spinner
N. B.
(
1998
).
Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families
.
Am. J. Hum. Genet.
62
,
1361
-
1369
.
Krantz
I. D.
,
Smith
R.
,
Colliton
R. P.
,
Tinkel
H.
,
Zackai
E. H.
,
Piccoli
D. A.
,
Goldmuntz
E.
,
Spinner
N. B.
(
1999
).
Jagged1 mutations in patients ascertained with isolated congenital heart defects
.
Am. J. Med. Genet.
84
,
56
-
60
.
Krebs
L. T.
,
Shutter
J. R.
,
Tanigaki
K.
,
Honjo
T.
,
Stark
K. L.
,
Gridley
T.
(
2004
).
Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants
.
Genes Dev.
18
,
2469
-
2473
.
Krejci
A.
,
Bray
S.
(
2007
).
Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers
.
Genes Dev.
21
,
1322
-
1327
.
Krejci
A.
,
Bernard
F.
,
Housden
B. E.
,
Collins
S.
,
Bray
S. J.
(
2009
).
Direct response to Notch activation: signaling crosstalk and incoherent logic
.
Sci. Signal.
2
,
ra1
.
Ladi
E.
,
Nichols
J. T.
,
Ge
W.
,
Miyamoto
A.
,
Yao
C.
,
Yang
L. T.
,
Boulter
J.
,
Sun
Y. E.
,
Kintner
C.
,
Weinmaster
G.
(
2005
).
The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands
.
J. Cell Biol.
170
,
983
-
992
.
Lamar
E.
,
Deblandre
G.
,
Wettstein
D.
,
Gawantka
V.
,
Pollet
N.
,
Niehrs
C.
,
Kintner
C.
(
2001
).
Nrarp is a novel intracellular component of the Notch signaling pathway
.
Genes Dev.
15
,
1885
-
1899
.
LaVoie
M. J.
,
Selkoe
D. J.
(
2003
).
The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments
.
J. Biol. Chem.
278
,
34427
-
34437
.
Le
T. T.
,
Conley
K. W.
,
Brown
N. L.
(
2009
).
Jagged 1 is necessary for normal mouse lens formation
.
Dev. Biol.
328
,
118
-
126
.
Le Bras
S.
,
Loyer
N.
,
Le Borgne
R.
(
2011
).
The multiple facets of ubiquitination in the regulation of Notch signaling pathway
.
Traffic
12
,
149
-
161
.
Le Gall
M.
,
De Mattei
C.
,
Giniger
E.
(
2008
).
Molecular separation of two signaling pathways for the receptor, Notch
.
Dev. Biol.
313
,
556
-
567
.
Lehar
S. M.
,
Bevan
M. J.
(
2006
).
T cells develop normally in the absence of both Deltex1 and Deltex2
.
Mol. Cell. Biol.
26
,
7358
-
7371
.
Li
F.
,
Lan
Y.
,
Wang
Y.
,
Wang
J.
,
Yang
G.
,
Meng
F.
,
Han
H.
,
Meng
A.
,
Yang
X.
(
2011
).
Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch
.
Dev. Cell
20
,
291
-
302
.
Li
L.
,
Krantz
I. D.
,
Deng
Y.
,
Genin
A.
,
Banta
A. B.
,
Collins
C. C.
,
Qi
M.
,
Trask
B. J.
,
Kuo
W. L.
,
Cochran
J.
, et al. 
. (
1997
).
Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1
.
Nat. Genet.
16
,
243
-
251
.
Li
X.
,
Zhang
X.
,
Leathers
R.
,
Makino
A.
,
Huang
C.
,
Parsa
P.
,
Macias
J.
,
Yuan
J. X.
,
Jamieson
S. W.
,
Thistlethwaite
P. A.
(
2009
).
Notch3 signaling promotes the development of pulmonary arterial hypertension
.
Nat. Med.
15
,
1289
-
1297
.
Liu
J.
,
Sato
C.
,
Cerletti
M.
,
Wagers
A.
(
2010
).
Notch signaling in the regulation of stem cell self-renewal and differentiation
.
Curr. Top. Dev. Biol.
92
,
367
-
409
.
Liu
Z. J.
,
Shirakawa
T.
,
Li
Y.
,
Soma
A.
,
Oka
M.
,
Dotto
G. P.
,
Fairman
R. M.
,
Velazquez
O. C.
,
Herlyn
M.
(
2003
).
Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis
.
Mol. Cell. Biol.
23
,
14
-
25
.
Logeat
F.
,
Bessia
C.
,
Brou
C.
,
LeBail
O.
,
Jarriault
S.
,
Seidah
N. G.
,
Israel
A.
(
1998
).
The Notch1 receptor is cleaved constitutively by a furin-like convertase
.
Proc. Natl. Acad. Sci. USA
95
,
8108
-
8112
.
Loomes
K. M.
,
Stevens
S. A.
,
O'Brien
M. L.
,
Gonzalez
D. M.
,
Ryan
M. J.
,
Segalov
M.
,
Dormans
N. J.
,
Mimoto
M. S.
,
Gibson
J. D.
,
Sewell
W.
, et al. 
. (
2007
).
Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects
.
Dev. Dyn.
236
,
2943
-
2951
.
Lozier
J.
,
McCright
B.
,
Gridley
T.
(
2008
).
Notch signaling regulates bile duct morphogenesis in mice
.
PLoS ONE
3
,
e1851
.
Lyman
D. F.
,
Yedvobnick
B.
(
1995
).
Drosophila Notch receptor activity suppresses Hairless function during adult external sensory organ development
.
Genetics
141
,
1491
-
1505
.
MacGrogan
D.
,
Nus
M.
,
de la Pompa
J. L.
(
2010
).
Notch signaling in cardiac development and disease
.
Curr. Top. Dev. Biol.
92
,
333
-
365
.
Main
H.
,
Lee
K. L.
,
Yang
H.
,
Haapa-Paananen
S.
,
Edgren
H.
,
Jin
S.
,
Sahlgren
C.
,
Kallioniemi
O.
,
Poellinger
L.
,
Lim
B.
, et al. 
. (
2010
).
Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells
.
Exp. Cell Res.
316
,
1610
-
1624
.
Malyukova
A.
,
Dohda
T.
,
von der Lehr
N.
,
Akhoondi
S.
,
Corcoran
M.
,
Heyman
M.
,
Spruck
C.
,
Grander
D.
,
Lendahl
U.
,
Sangfelt
O.
(
2007
).
The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling
.
Cancer Res.
67
,
5611
-
5616
.
Mansour
M. R.
,
Sulis
M. L.
,
Duke
V.
,
Foroni
L.
,
Jenkinson
S.
,
Koo
K.
,
Allen
C. G.
,
Gale
R. E.
,
Buck
G.
,
Richards
S.
, et al. 
. (
2009
).
Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol
.
J. Clin. Oncol.
27
,
4352
-
4356
.
Marklund
U.
,
Hansson
E. M.
,
Sundstrom
E.
,
de Angelis
M. H.
,
Przemeck
G. K.
,
Lendahl
U.
,
Muhr
J.
,
Ericson
J.
(
2010
).
Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression
.
Development
137
,
437
-
445
.
Matsuda
M.
,
Chitnis
A. B.
(
2009
).
Interaction with Notch determines endocytosis of specific Delta ligands in zebrafish neural tissue
.
Development
136
,
197
-
206
.
Matsuda
Y.
,
Wakamatsu
Y.
,
Kohyama
J.
,
Okano
H.
,
Fukuda
K.
,
Yasugi
S.
(
2005
).
Notch signaling functions as a binary switch for the determination of glandular and luminal fates of endodermal epithelium during chicken stomach development
.
Development
132
,
2783
-
2793
.
Matsumoto
A.
,
Onoyama
I.
,
Sunabori
T.
,
Kageyama
R.
,
Okano
H.
,
Nakayama
K. I.
(
2011
).
Fbxw7-dependent degradation of Notch is required for control of stemness and neuronal-glial differentiation in neural stem cells
.
J. Biol. Chem.
286
,
13754
-
13764
.
Matsuno
K.
,
Diederich
R. J.
,
Go
M. J.
,
Blaumueller
C. M.
,
Artavanis-Tsakonas
S.
(
1995
).
Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats
.
Development
121
,
2633
-
2644
.
Matsuno
K.
,
Ito
M.
,
Hori
K.
,
Miyashita
F.
,
Suzuki
S.
,
Kishi
N.
,
Artavanis-Tsakonas
S.
,
Okano
H.
(
2002
).
Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling
.
Development
129
,
1049
-
1059
.
McDaniell
R.
,
Warthen
D. M.
,
Sanchez-Lara
P. A.
,
Pai
A.
,
Krantz
I. D.
,
Piccoli
D. A.
,
Spinner
N. B.
(
2006
).
NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway
.
Am. J. Hum. Genet.
79
,
169
-
173
.
McElhinny
A. S.
,
Li
J. L.
,
Wu
L.
(
2008
).
Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways
.
Oncogene
27
,
5138
-
5147
.
McGill
M. A.
,
Dho
S. E.
,
Weinmaster
G.
,
McGlade
C. J.
(
2009
).
Numb regulates post-endocytic trafficking and degradation of Notch1
.
J. Biol. Chem.
284
,
26427
-
26438
.
McGinnis
R. E.
,
Fox
H.
,
Yates
P.
,
Cameron
L. A.
,
Barnes
M. R.
,
Gray
I. C.
,
Spurr
N. K.
,
Hurko
O.
,
St Clair
D.
(
2001
).
Failure to confirm NOTCH4 association with schizophrenia in a large population-based sample from Scotland
.
Nat. Genet.
28
,
128
-
129
.
McGlinn
E.
,
van Bueren
K. L.
,
Fiorenza
S.
,
Mo
R.
,
Poh
A. M.
,
Forrest
A.
,
Soares
M. B.
,
Bonaldo Mde
F.
,
Grimmond
S.
,
Hui
C. C.
, et al. 
. (
2005
).
Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development
.
Mech. Dev.
122
,
1218
-
1233
.
Meier-Stiegen
F.
,
Schwanbeck
R.
,
Bernoth
K.
,
Martini
S.
,
Hieronymus
T.
,
Ruau
D.
,
Zenke
M.
,
Just
U.
(
2010
).
Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors
.
PLoS ONE
5
,
e11481
.
Micchelli
C. A.
,
Rulifson
E. J.
,
Blair
S. S.
(
1997
).
The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate
.
Development
124
,
1485
-
1495
.
Mikhailik
A.
,
Mazella
J.
,
Liang
S.
,
Tseng
L.
(
2009
).
Notch ligand-dependent gene expression in human endometrial stromal cells
.
Biochem. Biophys. Res. Commun.
388
,
479
-
482
.
Miller
A. C.
,
Lyons
E. L.
,
Herman
T. G.
(
2009
).
cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition
.
Curr. Biol.
19
,
1378
-
1383
.
Mirsky
R.
,
Woodhoo
A.
,
Parkinson
D. B.
,
Arthur-Farraj
P.
,
Bhaskaran
A.
,
Jessen
K. R.
(
2008
).
Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation
.
J. Peripher. Nerv. Syst.
13
,
122
-
135
.
Mitsiadis
T. A.
,
Regaudiat
L.
,
Gridley
T.
(
2005
).
Role of the Notch signalling pathway in tooth morphogenesis
.
Arch. Oral Biol.
50
,
137
-
140
.
Mo
J. S.
,
Ann
E. J.
,
Yoon
J. H.
,
Jung
J.
,
Choi
Y. H.
,
Kim
H. Y.
,
Ahn
J. S.
,
Kim
S. M.
,
Kim
M. Y.
,
Hong
J. A.
, et al. 
. (
2011
).
Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase
.
J. Cell Sci.
124
,
100
-
112
.
Moellering
R. E.
,
Cornejo
M.
,
Davis
T. N.
,
Del Bianco
C.
,
Aster
J. C.
,
Blacklow
S. C.
,
Kung
A. L.
,
Gilliland
D. G.
,
Verdine
G. L.
,
Bradner
J. E.
(
2009
).
Direct inhibition of the NOTCH transcription factor complex
.
Nature
462
,
182
-
188
.
Mohr
O. L.
(
1919
).
Character changes caused by mutation of an entire region of a chromosome in Drosophila
.
Genetics
4
,
275
-
282
.
Molnar
C.
,
Ruiz-Gomez
A.
,
Martin
M.
,
Rojo-Berciano
S.
,
Mayor
F.
,
de Celis
J. F.
(
2011
).
Role of the Drosophila non-visual ss-arrestin kurtz in hedgehog signalling
.
PLoS Genet.
7
,
e1001335
.
Monahan
P.
,
Rybak
S.
,
Raetzman
L. T.
(
2009
).
The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary
.
Endocrinology
150
,
4386
-
4394
.
Moretti
J.
,
Chastagner
P.
,
Gastaldello
S.
,
Heuss
S. F.
,
Dirac
A. M.
,
Bernards
R.
,
Masucci
M. G.
,
Israel
A.
,
Brou
C.
(
2010
).
The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation
.
PLoS Biol.
8
,
e1000545
.
Morimoto
M.
,
Liu
Z.
,
Cheng
H. T.
,
Winters
N.
,
Bader
D.
,
Kopan
R.
(
2010
).
Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate
.
J. Cell Sci.
123
,
213
-
224
.
Morrow
D.
,
Cullen
J. P.
,
Liu
W.
,
Guha
S.
,
Sweeney
C.
,
Birney
Y. A.
,
Collins
N.
,
Walls
D.
,
Redmond
E. M.
,
Cahill
P. A.
(
2009
).
Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A
.
Arterioscler. Thromb. Vasc. Biol.
29
,
1112
-
1118
.
Mukherjee
A.
,
Veraksa
A.
,
Bauer
A.
,
Rosse
C.
,
Camonis
J.
,
Artavanis-Tsakonas
S.
(
2005
).
Regulation of Notch signalling by non-visual beta-arrestin
.
Nat. Cell Biol.
7
,
1191
-
1201
.
Mukherjee
T.
,
Kim
W. S.
,
Mandal
L.
,
Banerjee
U.
(
2011
).
Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells
.
Science
332
,
1210
-
1213
.
Munoz-Descalzo
S.
,
Sanders
P. G.
,
Montagne
C.
,
Johnson
R. I.
,
Balayo
T.
,
Arias
A. M.
(
2010
).
Wingless modulates the ligand independent traffic of Notch through Dishevelled
.
Fly
4
,
182
-
193
.
Munoz-Descalzo
S.
,
Tkocz
K.
,
Balayo
T.
,
Arias
A. M.
(
2011
).
Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila
.
Development
138
,
1501
-
1506
.
Nadarajan
S.
,
Govindan
J. A.
,
McGovern
M.
,
Hubbard
E. J.
,
Greenstein
D.
(
2009
).
MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans
.
Development
136
,
2223
-
2234
.
Neves
A.
,
English
K.
,
Priess
J. R.
(
2007
).
Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans
.
Development
134
,
4459
-
4468
.
Nichols
J. T.
,
Miyamoto
A.
,
Olsen
S. L.
,
D'Souza
B.
,
Yao
C.
,
Weinmaster
G.
(
2007
).
DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur
.
J. Cell Biol.
176
,
445
-
458
.
Niimi
H.
,
Pardali
K.
,
Vanlandewijck
M.
,
Heldin
C. H.
,
Moustakas
A.
(
2007
).
Notch signaling is necessary for epithelial growth arrest by TGF-beta
.
J. Cell Biol.
176
,
695
-
707
.
O'Connor-Giles
K. M.
,
Skeath
J. B.
(
2003
).
Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila
.
Dev. Cell
5
,
231
-
243
.
O'Neil
J.
,
Grim
J.
,
Strack
P.
,
Rao
S.
,
Tibbitts
D.
,
Winter
C.
,
Hardwick
J.
,
Welcker
M.
,
Meijerink
J. P.
,
Pieters
R.
, et al. 
. (
2007
).
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors
.
J. Exp. Med.
204
,
1813
-
1824
.
Oberg
C.
,
Li
J.
,
Pauley
A.
,
Wolf
E.
,
Gurney
M.
,
Lendahl
U.
(
2001
).
The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog
.
J. Biol. Chem.
276
,
35847
-
35853
.
Oberstein
S. A.
,
Ferrari
M. D.
,
Bakker
E.
,
van Gestel
J.
,
Kneppers
A. L.
,
Frants
R. R.
,
Breuning
M. H.
,
Haan
J.
(
1999
).
Diagnostic Notch3 sequence analysis in CADASIL: three new mutations in Dutch patients. Dutch CADASIL Research Group
.
Neurology
52
,
1913
-
1915
.
Oda
T.
,
Elkahloun
A. G.
,
Pike
B. L.
,
Okajima
K.
,
Krantz
I. D.
,
Genin
A.
,
Piccoli
D. A.
,
Meltzer
P. S.
,
Spinner
N. B.
,
Collins
F. S.
, et al. 
. (
1997
).
Mutations in the human Jagged1 gene are responsible for Alagille syndrome
.
Nat. Genet.
16
,
235
-
242
.
Oda
T.
,
Elkahloun
A. G.
,
Meltzer
P. S.
,
Okajima
K.
,
Sugiyama
K.
,
Wada
Y.
,
Chandrasekharappa
S. C.
(
2000
).
Identification of a larger than 3 Mb deletion including JAG1 in an Alagille syndrome patient with a translocation t(3;20)(q13.3;p12.2)
.
Hum. Mutat.
16
,
92
.
Ohashi
S.
,
Natsuizaka
M.
,
Yashiro-Ohtani
Y.
,
Kalman
R. A.
,
Nakagawa
M.
,
Wu
L.
,
Klein-Szanto
A. J.
,
Herlyn
M.
,
Diehl
J. A.
,
Katz
J. P.
, et al. 
. (
2010
).
NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network
.
Gastroenterology
139
,
2113
-
2123
.
Ohata
S.
,
Aoki
R.
,
Kinoshita
S.
,
Yamaguchi
M.
,
Tsuruoka-Kinoshita
S.
,
Tanaka
H.
,
Wada
H.
,
Watabe
S.
,
Tsuboi
T.
,
Masai
I.
, et al. 
. (
2011
).
Dual roles of Notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells
.
Neuron
69
,
215
-
230
.
Okajima
T.
,
Reddy
B.
,
Matsuda
T.
,
Irvine
K. D.
(
2008
).
Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling
.
BMC Biol.
6
,
1
.
Okamoto
R.
,
Tsuchiya
K.
,
Nemoto
Y.
,
Akiyama
J.
,
Nakamura
T.
,
Kanai
T.
,
Watanabe
M.
(
2009
).
Requirement of Notch activation during regeneration of the intestinal epithelia
.
Am. J. Physiol. Gastrointest. Liver Physiol.
296
,
G23
-
G35
.
Ong
C. T.
,
Cheng
H. T.
,
Chang
L. W.
,
Ohtsuka
T.
,
Kageyama
R.
,
Stormo
G. D.
,
Kopan
R.
(
2006
).
Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability
.
J. Biol. Chem.
281
,
5106
-
5119
.
Orr
B.
,
Grace
O. C.
,
Vanpoucke
G.
,
Ashley
G. R.
,
Thomson
A. A.
(
2009
).
A role for notch signaling in stromal survival and differentiation during prostate development
.
Endocrinology
150
,
463
-
472
.
Palomero
T.
,
Lim
W. K.
,
Odom
D. T.
,
Sulis
M. L.
,
Real
P. J.
,
Margolin
A.
,
Barnes
K. C.
,
O'Neil
J.
,
Neuberg
D.
,
Weng
A. P.
, et al. 
. (
2006
).
NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth
.
Proc. Natl. Acad. Sci. USA
103
,
18261
-
18266
.
Pan
Y.
,
Liu
Z.
,
Shen
J.
,
Kopan
R.
(
2005
).
Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis
.
Dev. Biol.
286
,
472
-
482
.
Parks
A. L.
,
Klueg
K. M.
,
Stout
J. R.
,
Muskavitch
M. A.
(
2000
).
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
.
Development
127
,
1373
-
1385
.
Patel
N. S.
,
Li
J. L.
,
Generali
D.
,
Poulsom
R.
,
Cranston
D. W.
,
Harris
A. L.
(
2005
).
Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function
.
Cancer Res.
65
,
8690
-
8697
.
Perez
L.
,
Milan
M.
,
Bray
S.
,
Cohen
S. M.
(
2005
).
Ligand-binding and signaling properties of the Ax[M1] form of Notch
.
Mech. Dev.
122
,
479
-
486
.
Phng
L. K.
,
Potente
M.
,
Leslie
J. D.
,
Babbage
J.
,
Nyqvist
D.
,
Lobov
I.
,
Ondr
J. K.
,
Rao
S.
,
Lang
R. A.
,
Thurston
G.
, et al. 
. (
2009
).
Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis
.
Dev. Cell
16
,
70
-
82
.
Pierfelice
T. J.
,
Schreck
K. C.
,
Dang
L.
,
Asnaghi
L.
,
Gaiano
N.
,
Eberhart
C. G.
(
2011
).
Notch3 activation promotes invasive glioma formation in a tissue site-specific manner
.
Cancer Res.
71
,
1115
-
1125
.
Pietras
A.
,
von Stedingk
K.
,
Lindgren
D.
,
Pahlman
S.
,
Axelson
H.
(
2011
).
JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation
.
Mol. Cancer Res.
9
,
626
-
636
.
Pistollato
F.
,
Rampazzo
E.
,
Persano
L.
,
Abbadi
S.
,
Frasson
C.
,
Denaro
L.
,
D'Avella
D.
,
Panchision
D. M.
,
Della Puppa
A.
,
Scienza
R.
, et al. 
. (
2010
).
Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate
.
Stem Cells
28
,
1918
-
1929
.
Poellinger
L.
,
Lendahl
U.
(
2008
).
Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms
.
Curr. Opin. Genet. Dev.
18
,
449
-
454
.
Qiu
L.
,
Joazeiro
C.
,
Fang
N.
,
Wang
H. Y.
,
Elly
C.
,
Altman
Y.
,
Fang
D.
,
Hunter
T.
,
Liu
Y. C.
(
2000
).
Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase
.
J. Biol. Chem.
275
,
35734
-
35737
.
Raas-Rothschild
A.
,
Shteyer
E.
,
Lerer
I.
,
Nir
A.
,
Granot
E.
,
Rein
A. J.
(
2002
).
Jagged1 gene mutation for abdominal coarctation of the aorta in Alagille syndrome
.
Am. J. Med. Genet.
112
,
75
-
78
.
Radtke
F.
,
Fasnacht
N.
,
Macdonald
H. R.
(
2010
).
Notch signaling in the immune system
.
Immunity
32
,
14
-
27
.
Raetzman
L. T.
,
Wheeler
B. S.
,
Ross
S. A.
,
Thomas
P. Q.
,
Camper
S. A.
(
2006
).
Persistent expression of Notch2 delays gonadotrope differentiation
.
Mol. Endocrinol.
20
,
2898
-
2908
.
Raetzman
L. T.
,
Cai
J. X.
,
Camper
S. A.
(
2007
).
Hes1 is required for pituitary growth and melanotrope specification
.
Dev. Biol.
304
,
455
-
466
.
Rajan
A.
,
Tien
A. C.
,
Haueter
C. M.
,
Schulze
K. L.
,
Bellen
H. J.
(
2009
).
The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors
.
Nat. Cell Biol.
11
,
815
-
824
.
Rallis
C.
,
Pinchin
S. M.
,
Ish-Horowicz
D.
(
2010
).
Cell-autonomous integrin control of Wnt and Notch signalling during somitogenesis
.
Development
137
,
3591
-
3601
.
Rangarajan
A.
,
Talora
C.
,
Okuyama
R.
,
Nicolas
M.
,
Mammucari
C.
,
Oh
H.
,
Aster
J. C.
,
Krishna
S.
,
Metzger
D.
,
Chambon
P.
, et al. 
. (
2001
).
Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation
.
EMBO J.
20
,
3427
-
3436
.
Rao
P.
,
Kadesch
T.
(
2003
).
The intracellular form of notch blocks transforming growth factor beta-mediated growth arrest in Mv1Lu epithelial cells
.
Mol. Cell. Biol.
23
,
6694
-
6701
.
Rebeiz
M.
,
Miller
S. W.
,
Posakony
J. W.
(
2011
).
Notch regulates numb: integration of conditional and autonomous cell fate specification
.
Development
138
,
215
-
225
.
Rhyu
M. S.
,
Jan
L. Y.
,
Jan
Y. N.
(
1994
).
Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells
.
Cell
76
,
477
-
491
.
Richards
G. S.
,
Degnan
B. M.
(
2009
).
The dawn of developmental signaling in the metazoa
.
Cold Spring Harb. Symp. Quant. Biol.
74
,
81
-
90
.
Rizzo
P.
,
Miao
H.
,
D'Souza
G.
,
Osipo
C.
,
Song
L. L.
,
Yun
J.
,
Zhao
H.
,
Mascarenhas
J.
,
Wyatt
D.
,
Antico
G.
, et al. 
. (
2008
).
Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches
.
Cancer Res.
68
,
5226
-
5235
.
Ronchini
C.
,
Capobianco
A. J.
(
2001
).
Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic)
.
Mol. Cell. Biol.
21
,
5925
-
5934
.
Ropke
A.
,
Kujat
A.
,
Graber
M.
,
Giannakudis
J.
,
Hansmann
I.
(
2003
).
Identification of 36 novel Jagged1 (JAG1) mutations in patients with Alagille syndrome
.
Hum. Mutat.
21
,
100
.
Rowan
S.
,
Conley
K. W.
,
Le
T. T.
,
Donner
A. L.
,
Maas
R. L.
,
Brown
N. L.
(
2008
).
Notch signaling regulates growth and differentiation in the mammalian lens
.
Dev. Biol.
321
,
111
-
122
.
Sahlgren
C.
,
Gustafsson
M. V.
,
Jin
S.
,
Poellinger
L.
,
Lendahl
U.
(
2008
).
Notch signaling mediates hypoxia-induced tumor cell migration and invasion
.
Proc. Natl. Acad. Sci. USA
105
,
6392
-
6397
.
Saint Just Ribeiro
M.
,
Hansson
M. L.
,
Lindberg
M. J.
,
Popko-Scibor
A. E.
,
Wallberg
A. E.
(
2009
).
GSK3beta is a negative regulator of the transcriptional coactivator MAML1
.
Nucleic Acids Res.
37
,
6691
-
6700
.
Samon
J. B.
,
Champhekar
A.
,
Minter
L. M.
,
Telfer
J. C.
,
Miele
L.
,
Fauq
A.
,
Das
P.
,
Golde
T. E.
,
Osborne
B. A.
(
2008
).
Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells
.
Blood
112
,
1813
-
1821
.
Sanders
P. G.
,
Munoz-Descalzo
S.
,
Balayo
T.
,
Wirtz-Peitz
F.
,
Hayward
P.
,
Arias
A. M.
(
2009
).
Ligand-independent traffic of Notch buffers activated Armadillo in Drosophila
.
PLoS Biol.
7
,
e1000169
.
Satoh
Y.
,
Matsumura
I.
,
Tanaka
H.
,
Ezoe
S.
,
Sugahara
H.
,
Mizuki
M.
,
Shibayama
H.
,
Ishiko
E.
,
Ishiko
J.
,
Nakajima
K.
, et al. 
. (
2004
).
Roles for c-Myc in self-renewal of hematopoietic stem cells
.
J. Biol. Chem.
279
,
24986
-
24993
.
Schouwey
K.
,
Beermann
F.
(
2008
).
The Notch pathway: hair graying and pigment cell homeostasis
.
Histol. Histopathol.
23
,
609
-
619
.
Sestan
N.
,
Artavanis-Tsakonas
S.
,
Rakic
P.
(
1999
).
Contact-dependent inhibition of cortical neurite growth mediated by notch signaling
.
Science
286
,
741
-
746
.
Sethi
M. K.
,
Buettner
F. F.
,
Krylov
V. B.
,
Takeuchi
H.
,
Nifantiev
N. E.
,
Haltiwanger
R. S.
,
Gerardy-Schahn
R.
,
Bakker
H.
(
2010
).
Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats
.
J. Biol. Chem.
285
,
1582
-
1586
.
Sethi
N.
,
Dai
X.
,
Winter
C. G.
,
Kang
Y.
(
2011
).
Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
.
Cancer Cell
19
,
192
-
205
.
Shimizu
T.
,
Kagawa
T.
,
Inoue
T.
,
Nonaka
A.
,
Takada
S.
,
Aburatani
H.
,
Taga
T.
(
2008
).
Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells
.
Mol. Cell. Biol.
28
,
7427
-
7441
.
Shin
H. M.
,
Minter
L. M.
,
Cho
O. H.
,
Gottipati
S.
,
Fauq
A. H.
,
Golde
T. E.
,
Sonenshein
G. E.
,
Osborne
B. A.
(
2006
).
Notch1 augments NF-kappaB activity by facilitating its nuclear retention
.
EMBO J.
25
,
129
-
138
.
Simpson
M. A.
,
Irving
M. D.
,
Asilmaz
E.
,
Gray
M. J.
,
Dafou
D.
,
Elmslie
F. V.
,
Mansour
S.
,
Holder
S. E.
,
Brain
C. E.
,
Burton
B. K.
, et al. 
. (
2011
).
Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss
.
Nat. Genet.
43
,
303
-
305
.
Skeath
J. B.
,
Doe
C. Q.
(
1998
).
Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS
.
Development
125
,
1857
-
1865
.
Sklar
P.
,
Schwab
S. G.
,
Williams
N. M.
,
Daly
M.
,
Schaffner
S.
,
Maier
W.
,
Albus
M.
,
Trixler
M.
,
Eichhammer
P.
,
Lerer
B.
, et al. 
. (
2001
).
Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls
.
Nat. Genet.
28
,
126
-
128
.
Skol
A. D.
,
Young
K. A.
,
Tsuang
D. W.
,
Faraone
S. V.
,
Haverstock
S. L.
,
Bingham
S.
,
Prabhudesai
S.
,
Mena
F.
,
Menon
A. S.
,
Yu
C. E.
, et al. 
. (
2003
).
Modest evidence for linkage and possible confirmation of association between NOTCH4 and schizophrenia in a large Veterans Affairs Cooperative Study sample
.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
118B
,
8
-
15
.
Sorensen
E. B.
,
Conner
S. D.
(
2010
).
gamma-secretase-dependent cleavage initiates notch signaling from the plasma membrane
.
Traffic
11
,
1234
-
1245
.
Sparrow
D. B.
,
Chapman
G.
,
Wouters
M. A.
,
Whittock
N. V.
,
Ellard
S.
,
Fatkin
D.
,
Turnpenny
P. D.
,
Kusumi
K.
,
Sillence
D.
,
Dunwoodie
S. L.
(
2006
).
Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype
.
Am. J. Hum. Genet.
78
,
28
-
37
.
Sprinzak
D.
,
Lakhanpal
A.
,
Lebon
L.
,
Santat
L. A.
,
Fontes
M. E.
,
Anderson
G. A.
,
Garcia-Ojalvo
J.
,
Elowitz
M. B.
(
2010
).
Cis-interactions between Notch and Delta generate mutually exclusive signalling states
.
Nature
465
,
86
-
90
.
Stankiewicz
P.
,
Rujner
J.
,
Loffler
C.
,
Kruger
A.
,
Nimmakayalu
M.
,
Pilacik
B.
,
Krajewska-Walasek
M.
,
Gutkowska
A.
,
Hansmann
I.
,
Giannakudis
I.
(
2001
).
Alagille syndrome associated with a paracentric inversion 20p12.2p13 disrupting the JAG1 gene
.
Am. J. Med. Genet.
103
,
166
-
171
.
Stanley
P.
,
Okajima
T.
(
2010
).
Roles of glycosylation in Notch signaling
.
Curr. Top. Dev. Biol.
92
,
131
-
164
.
Sun
Y.
,
Lowther
W.
,
Kato
K.
,
Bianco
C.
,
Kenney
N.
,
Strizzi
L.
,
Raafat
D.
,
Hirota
M.
,
Khan
N. I.
,
Bargo
S.
, et al. 
. (
2005
).
Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling
.
Oncogene
24
,
5365
-
5374
.
Swanson
C. I.
,
Evans
N. C.
,
Barolo
S.
(
2010
).
Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer
.
Dev. Cell
18
,
359
-
370
.
Tagami
S.
,
Okochi
M.
,
Yanagida
K.
,
Ikuta
A.
,
Fukumori
A.
,
Matsumoto
N.
,
Ishizuka-Katsura
Y.
,
Nakayama
T.
,
Itoh
N.
,
Jiang
J.
, et al. 
. (
2008
).
Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1
.
Mol. Cell. Biol.
28
,
165
-
176
.
Tang
H.
,
Brennan
J.
,
Karl
J.
,
Hamada
Y.
,
Raetzman
L.
,
Capel
B.
(
2008
).
Notch signaling maintains Leydig progenitor cells in the mouse testis
.
Development
135
,
3745
-
3753
.
Tang
Y.
,
Urs
S.
,
Liaw
L.
(
2008
).
Hairy-related transcription factors inhibit Notch-induced smooth muscle alpha-actin expression by interfering with Notch intracellular domain/CBF-1 complex interaction with the CBF-1-binding site
.
Circ. Res.
102
,
661
-
668
.
Tang
Y.
,
Urs
S.
,
Boucher
J.
,
Bernaiche
T.
,
Venkatesh
D.
,
Spicer
D. B.
,
Vary
C. P.
,
Liaw
L.
(
2010
).
Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation
.
J. Biol. Chem.
285
,
17556
-
17563
.
Tanigaki
K.
,
Honjo
T.
(
2010
).
Two opposing roles of RBP-J in Notch signaling
.
Curr. Top. Dev. Biol.
92
,
231
-
252
.
Tanigaki
K.
,
Nogaki
F.
,
Takahashi
J.
,
Tashiro
K.
,
Kurooka
H.
,
Honjo
T.
(
2001
).
Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate
.
Neuron
29
,
45
-
55
.
Tarassishin
L.
,
Yin
Y. I.
,
Bassit
B.
,
Li
Y. M.
(
2004
).
Processing of Notch and amyloid precursor protein by gamma-secretase is spatially distinct
.
Proc. Natl. Acad. Sci. USA
101
,
17050
-
17055
.
Tian
J.
,
Ling
L.
,
Shboul
M.
,
Lee
H.
,
O'Connor
B.
,
Merriman
B.
,
Nelson
S. F.
,
Cool
S.
,
Ababneh
O. H.
,
Al-Hadidy
A.
, et al. 
. (
2010
).
Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling
.
Am. J. Hum. Genet.
87
,
768
-
778
.
Tian
L.
,
Wu
X.
,
Chi
C.
,
Han
M.
,
Xu
T.
,
Zhuang
Y.
(
2008
).
ADAM10 is essential for proteolytic activation of Notch during thymocyte development
.
Int. Immunol.
20
,
1181
-
1187
.
Timmerman
L. A.
,
Grego-Bessa
J.
,
Raya
A.
,
Bertran
E.
,
Perez-Pomares
J. M.
,
Diez
J.
,
Aranda
S.
,
Palomo
S.
,
McCormick
F.
,
Izpisua-Belmonte
J. C.
, et al. 
. (
2004
).
Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation
.
Genes Dev.
18
,
99
-
115
.
Tochigi
M.
,
Zhang
X.
,
Umekage
T.
,
Ohashi
J.
,
Kato
C.
,
Marui
T.
,
Otowa
T.
,
Hibino
H.
,
Otani
T.
,
Kohda
K.
, et al. 
. (
2004
).
Association of six polymorphisms of the NOTCH4 gene with schizophrenia in the Japanese population
.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
128B
,
37
-
40
.
Tong
X.
,
Zitserman
D.
,
Serebriiskii
I.
,
Andrake
M.
,
Dunbrack
R.
,
Roegiers
F.
(
2010
).
Numb independently antagonizes Sanpodo membrane targeting and Notch signaling in Drosophila sensory organ precursor cells
.
Mol. Biol. Cell
21
,
802
-
810
.
Tonon
G.
,
Modi
S.
,
Wu
L.
,
Kubo
A.
,
Coxon
A. B.
,
Komiya
T.
,
O'Neil
K.
,
Stover
K.
,
El-Naggar
A.
,
Griffin
J. D.
, et al. 
. (
2003
).
t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway
.
Nat. Genet.
33
,
208
-
213
.
Tousseyn
T.
,
Thathiah
A.
,
Jorissen
E.
,
Raemaekers
T.
,
Konietzko
U.
,
Reiss
K.
,
Maes
E.
,
Snellinx
A.
,
Serneels
L.
,
Nyabi
O.
, et al. 
. (
2009
).
ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase
.
J. Biol. Chem.
284
,
11738
-
11747
.
Tsivitse
S.
(
2010
).
Notch and Wnt signaling, physiological stimuli and postnatal myogenesis
.
Int. J. Biol. Sci.
6
,
268
-
281
.
Tsunematsu
R.
,
Nakayama
K.
,
Oike
Y.
,
Nishiyama
M.
,
Ishida
N.
,
Hatakeyama
S.
,
Bessho
Y.
,
Kageyama
R.
,
Suda
T.
,
Nakayama
K. I.
(
2004
).
Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development
.
J. Biol. Chem.
279
,
9417
-
9423
.
Turnpenny
P. D.
,
Whittock
N.
,
Duncan
J.
,
Dunwoodie
S.
,
Kusumi
K.
,
Ellard
S.
(
2003
).
Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis
.
J. Med. Genet.
40
,
333
-
339
.
Uemura
T.
,
Shepherd
S.
,
Ackerman
L.
,
Jan
L. Y.
,
Jan
Y. N.
(
1989
).
numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos
.
Cell
58
,
349
-
360
.
Ungerback
J.
,
Elander
N.
,
Grunberg
J.
,
Sigvardsson
M.
,
Soderkvist
P.
(
2011
).
The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells
.
PLoS ONE
6
,
e17957
.
Vaccari
T.
,
Lu
H.
,
Kanwar
R.
,
Fortini
M. E.
,
Bilder
D.
(
2008
).
Endosomal entry regulates Notch receptor activation in Drosophila melanogaster
.
J. Cell Biol.
180
,
755
-
762
.
van Tetering
G.
,
van Diest
P.
,
Verlaan
I.
,
van der Wall
E.
,
Kopan
R.
,
Vooijs
M.
(
2009
).
Metalloprotease ADAM10 is required for Notch1 site 2 cleavage
.
J. Biol. Chem.
284
,
31018
-
31027
.
Vasiliauskas
D.
,
Laufer
E.
,
Stern
C. D.
(
2003
).
A role for hairy1 in regulating chick limb bud growth
.
Dev. Biol.
262
,
94
-
106
.
Vasquez-Del Carpio
R.
,
Kaplan
F. M.
,
Weaver
K. L.
,
Vanwye
J. D.
,
Alves-Guerra
M. C.
,
Robbins
D. J.
,
Capobianco
A. J.
(
2011
).
Assembly of a notch transcriptional activation complex requires multimerization
.
Mol. Cell. Biol.
31
,
1396
-
1408
.
Vilimas
T.
,
Mascarenhas
J.
,
Palomero
T.
,
Mandal
M.
,
Buonamici
S.
,
Meng
F.
,
Thompson
B.
,
Spaulding
C.
,
Macaroun
S.
,
Alegre
M. L.
, et al. 
. (
2007
).
Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia
.
Nat. Med.
13
,
70
-
77
.
Wacker
S. A.
,
Alvarado
C.
,
von Wichert
G.
,
Knippschild
U.
,
Wiedenmann
J.
,
Clauss
K.
,
Nienhaus
G. U.
,
Hameister
H.
,
Baumann
B.
,
Borggrefe
T.
, et al. 
. (
2011
).
RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J
.
EMBO J.
30
,
43
-
56
.
Wang
H.
,
Chia
W.
(
2005
).
Drosophila neural progenitor polarity and asymmetric division
.
Biol. Cell
97
,
63
-
74
.
Wang
J.
,
Shelly
L.
,
Miele
L.
,
Boykins
R.
,
Norcross
M. A.
,
Guan
E.
(
2001
).
Human Notch-1 inhibits NF-kappa B activity in the nucleus through a direct interaction involving a novel domain
.
J. Immunol.
167
,
289
-
295
.
Wang
X. D.
,
Shou
J.
,
Wong
P.
,
French
D. M.
,
Gao
W. Q.
(
2004
).
Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement
.
J. Biol. Chem.
279
,
24733
-
24744
.
Wang
X. D.
,
Leow
C. C.
,
Zha
J.
,
Tang
Z.
,
Modrusan
Z.
,
Radtke
F.
,
Aguet
M.
,
de Sauvage
F. J.
,
Gao
W. Q.
(
2006
).
Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation
.
Dev. Biol.
290
,
66
-
80
.
Wang
Z.
,
Wei
J.
,
Zhang
X.
,
Guo
Y.
,
Xu
Q.
,
Liu
S.
,
Shi
J.
,
Yu
Y.
,
Ju
G.
,
Li
Y.
, et al. 
. (
2006
).
A review and re-evaluation of an association between the NOTCH4 locus and schizophrenia
.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
141B
,
902
-
906
.
Warthen
D. M.
,
Moore
E. C.
,
Kamath
B. M.
,
Morrissette
J. J.
,
Sanchez
P.
,
Piccoli
D. A.
,
Krantz
I. D.
,
Spinner
N. B.
(
2006
).
Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate
.
Hum. Mutat.
27
,
436
-
443
.
Weerkamp
F.
,
Luis
T. C.
,
Naber
B. A.
,
Koster
E. E.
,
Jeannotte
L.
,
van Dongen
J. J.
,
Staal
F. J.
(
2006
).
Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program
.
Leukemia
20
,
1967
-
1977
.
Wei
J.
,
Hemmings
G. P.
(
2000
).
The NOTCH4 locus is associated with susceptibility to schizophrenia
.
Nat. Genet.
25
,
376
-
377
.
Wendorff
A. A.
,
Koch
U.
,
Wunderlich
F. T.
,
Wirth
S.
,
Dubey
C.
,
Bruning
J. C.
,
MacDonald
H. R.
,
Radtke
F.
(
2010
).
Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation
.
Immunity
33
,
671
-
684
.