During gastrulation, cardiovascular progenitor cells (CPCs) migrate to the future heart-forming region of the embryo, where they produce the major cardiac lineages. But what regulates CPC fate and behaviour? On p. 3113, Ian Scott and colleagues report that Smarcd3b (Swi/Snf-related matrix-associated actin-dependent regulator of chromatin subfamily d member 3b) and the transcription factor Gata5 can induce a CPC-like state in zebrafish embryos. In mice, SMARCD3, GATA4 and TBX5 form a cardiac BAF (cBAF) chromatin remodelling complex that promotes myocardial differentiation in the embryonic mesoderm. The researchers now show that smarcd3b and gata5 overexpression in zebrafish embryos leads to the formation of an enlarged heart, whereas combined loss of smarcd3b, gata5 and tbx5 inhibits cardiac differentiation. Most notably, transplantation experiments show that cells overexpressing cBAF components migrate to the developing heart and differentiate into cardiac cells, even if initially placed in non-cardiogenic regions of the embryo. These results show that cBAF has a conserved role in cardiac differentiation and can promote a CPC-like state in vivo.
Gata-way to a cardiac progenitor fate
Gata-way to a cardiac progenitor fate. Development 1 August 2011; 138 (15): e1505. doi:
Download citation file:
Advertisement
Cited by
Biologists @ 100 - join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the Spring Meetings of the BSCB and the BSDB, the JEB Symposium Sensory Perception in a Changing World and a DMM programme on antimicrobial resistance. Find out more and register your interest to join us in March 2025 in Liverpool, UK.
Pathway to Independence Programme: our 2024 PI fellows
Following a successful pilot year in 2023 with a fantastic set of postdocs (several of whom are now establishing their own labs), we are delighted to be working with our second cohort of Pathway to Independence (PI) fellows, who we will be supporting with training, mentoring and networking opportunities over the coming years.
Development presents…
Development is excited to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are chaired each month by a different Development Editor, who invites talks from authors of exciting new papers and preprints. Visit Development presents... on the Node to see which topics are coming up and to catch up on recordings of past webinars.
40 years of the homeobox
2024 marks the 40th year since the discovery of the homeobox in 1984, a landmark that fundamentally impacted several fields including genetics, developmental biology, neuroscience and evolution. To celebrate this anniversary, Development has commissioned a series of articles from leaders in the field demonstrating the impact of the homeobox discovery on different disciplines.
Modelling Plant Stem Cells: Evolution, Development and Regeneration
Early-career researchers can now apply for a funded place for the Modelling Plant Stem Cells: Evolution, Development and Regeneration Workshop happening on 18-21 May 2025. This is a great opportunity that could enhance your career in various ways. Application deadline: Friday 15 November 2024.