How neurons connect to their targets during embryogenesis has been intensively studied, but what maintains the position and connections of nerves during postembryonic growth? To investigate this, William Talbot and colleagues study the development of the posterior lateral line nerve (PLLn) in zebrafish embryos and larvae (see p. 3643). Using transmission electron microscopy, the researchers show that the PLLn – a peripheral nerve that innervates sensory organs in the epidermis – initially grows in the epidermis but that shortly after axon outgrowth, the epidermal basement membrane degrades and reforms on the nerve's opposite side, thereby repositioning the nerve into the subepidermal space. Analysis of mutant and chimeric embryos shows that Schwann cells, which myelinate peripheral nervous system axons, are required for this process; without them, the PLLn becomes severely disorganised. Thus, by remodelling tissues in the vicinity of nerves, Schwann cells, which are traditionally regarded as static insulators, could play an important role in the proper organisation of nerves that innnervate other sensory organs during postembryonic growth.